This is an old revision of this page, as edited by Graeme Bartlett (talk | contribs) at 07:37, 19 December 2024 (more ids). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 07:37, 19 December 2024 by Graeme Bartlett (talk | contribs) (more ids)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (December 2024) |
Names | |
---|---|
IUPAC name 1,1-Dimethylurea | |
Other names N,N-Dimethylurea | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.009.053 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C3H8N2O |
Molar mass | 88.110 g·mol |
Related compounds | |
Related compounds | 1,2-Dimethylurea |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references |
1,1-Dimethylurea (DMU) is a urea derivative used as a polar solvent and a reagent in organic reactions. It is a solid, but forms a eutectic with a low melting point in combination with various hydroxylic additives that can serve as a environmentally sustainable solvent for various chemical reactions. The unsubstituted nitrogen, as an amine-like region, can serve as a nucleophile for a wide range of reactions, including reaction with acyl halides to form acylureas, coupling with vinyl halides, and multi-component condensation reaction with aldehydes. The unsubstituted amide-like portion can undergo oxidative coupling with alkenes to give dihydrooxazoles.
References
- Kotha, Sambasivarao; Ali, Rashid; Srinivas, Venu; Krishna, Nimita G. (2015). "Diversity-oriented approach to spirocycles with indole moiety via Fischer indole cyclization, olefin metathesis and Suzuki–Miyaura cross-coupling reactions". Tetrahedron. 71: 129–138. doi:10.1016/j.tet.2014.11.024.
- Lu, Jun; Li, Xiao-Tang; Ma, Er-Qian; Mo, Li-Ping; Zhang, Zhan-Hui (2014). "Superparamagnetic CuFeO2 Nanoparticles in Deep Eutectic Solvent: An Efficient and Recyclable Catalytic System for the Synthesis of Imidazopyridines". ChemCatChem. 6 (10): 2854–2859. doi:10.1002/cctc.201402415.
- Imperato, Giovanni; Eibler, Ernst; Niedermaier, Julia; König, Burkhard (2005). "Low-melting sugar–urea–salt mixtures as solvents for Diels–Alder reactions". Chem. Commun. (9): 1170–1172. doi:10.1039/b414515a. PMID 15726181.
- Ilgen, Florian; König, Burkhard (2009). "Organic reactions in low melting mixtures based on carbohydrates and L-carnitine—a comparison". Green Chemistry. 11 (6): 848. doi:10.1039/B816551C.
- Sobol, Eyal; Bialer, Meir; Yagen, Boris (2004). "Tetramethylcyclopropyl Analogue of a Leading Antiepileptic Drug, Valproic Acid. Synthesis and Evaluation of Anticonvulsant Activity of Its Amide Derivatives". Journal of Medicinal Chemistry. 47 (17): 4316–4326. doi:10.1021/jm0498351. PMID 15294003.
- Belfrage, Anna Karin; Gising, Johan; Svensson, Fredrik; Åkerblom, Eva; Sköld, Christian; Sandström, Anja (2015). "Efficient and Selective Palladium-Catalysed C-3 Urea Couplings to 3,5-Dichloro-2(1H)-pyrazinones". European Journal of Organic Chemistry (5): 978–986. doi:10.1002/ejoc.201403405.
- Ahamed, Anis; Arif, Ibrahim A.; Moydeen, Meera; Kumar, Radhakrishnan Surendra; Idhayadhulla, Akbar (2018). "In-Vitro Antibacterial and Cytotoxicity Evaluation of Some Novel Tetrazole Derivatives". International Journal of Pharmaceutical Sciences and Research. 9 (8): 3322–3327. doi:10.13040/IJPSR.0975-8232.9(8).3322-27.
- Wu, Fan; Alom, Nur-E; Ariyarathna, Jeewani P.; Naß, Johannes; Li, Wei (2019). "Regioselective Formal Cycloadditions of Urea Substrates with Activated and Unactivated Olefins for Intermolecular Olefin Aminooxygenation". Angewandte Chemie International Edition. 58 (34): 11676–11680. doi:10.1002/anie.201904662. PMID 31211504.
This article about an organic compound is a stub. You can help Misplaced Pages by expanding it. |