Misplaced Pages

Machine unlearning

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Cielquiparle (talk | contribs) at 14:10, 25 December 2024 (History: cn-tags). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 14:10, 25 December 2024 by Cielquiparle (talk | contribs) (History: cn-tags)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Field of study in artificial intelligence
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Machine unlearning" – news · newspapers · books · scholar · JSTOR (December 2024) (Learn how and when to remove this message)

Machine unlearning is a branch of machine learning focused on removing specific undesired element, such as private data, outdated information, copyrighted material, harmful content, dangerous abilities, or misinformation, without needing to rebuild models from the ground up. Large language models, like the ones powering ChatGPT, may be asked not just to remove specific elements but also to unlearn a "concept," "fact," or "knowledge," which aren't easily linked to specific examples. New terms such as "model editing," "concept editing," and "knowledge unlearning" have emerged to describe this process.

History

Early research efforts were largely motivated by Article 17 of the GDPR, the European Union's privacy regulation commonly known as the "right to be forgotten" (RTBF), introduced in 2014.

Present

The GDPR did not anticipate that the development of large language models would make data erasure a complex task. This issue has since led to research on "machine unlearning," with a growing focus on removing copyrighted material, harmful content, dangerous capabilities, and misinformation. Just as early experiences in humans shape later ones, some concepts are more fundamental and harder to unlearn. A piece of knowledge may be so deeply embedded in the model’s knowledge graph that unlearning it could cause internal contradictions, requiring adjustments to other parts of the graph to resolve them.

References

  1. "Machine Unlearning in 2024". Ken Ziyu Liu - Stanford Computer Science. Archived from the original on 2024-12-13. Retrieved 2024-12-24.
This article needs additional or more specific categories. Please help out by adding categories to it so that it can be listed with similar articles. (December 2024)
Category: