Misplaced Pages

Ultradistribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by GregariousMadness (talk | contribs) at 16:16, 27 December 2024 (Added inline citations.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 16:16, 27 December 2024 by GregariousMadness (talk | contribs) (Added inline citations.)(diff) ← Previous revision | Latest revision (diff) | Newer revision β†’ (diff)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (December 2024)
(Learn how and when to remove this message)

In functional analysis, an ultradistribution is a generalized function that extends the concept of a distributions by allowing test functions whose Fourier transforms have compact support. They form an element of the dual space 𝒡′, where 𝒡 is the space of test functions whose Fourier transforms belong to π’Ÿ, the space of infinitely differentiable functions with compact support.

See also

References

  1. Hoskins, R. F.; Sousa Pinto, J. (2011). Theories of generalized functions: Distributions, ultradistributions and other generalized functions (2nd ed.). Philadelphia: Woodhead Publishing.
  2. Sousa Pinto, J.; Hoskins, R. F. (1999). "A nonstandard definition of finite order ultradistributions". Proceedings of the Indian Academy of Sciences - Mathematical Sciences. 109 (4): 389–395. doi:10.1007/BF02837074.
  • Vilela Mendes, Rui (2012). "Stochastic solutions of nonlinear PDE's and an extension of superprocesses". arXiv:1209.3263.
  • Hasumi, Morisuke (1961). "Note on the n-tempered ultra-distributions". Tohoku Mathematical Journal. 13 (1): 94–104. doi:10.2748/tmj/1178244274.


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: