This is an old revision of this page, as edited by Smokefoot (talk | contribs) at 15:08, 2 January 2025 (→Formation of adducts with Lewis bases: rephrase). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 15:08, 2 January 2025 by Smokefoot (talk | contribs) (→Formation of adducts with Lewis bases: rephrase)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Names | |
---|---|
Preferred IUPAC name Aluminium hydride | |
Systematic IUPAC name Alumane | |
Other names
| |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.029.139 |
Gmelin Reference | 245 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | AlH3 |
Molar mass | 30.006 g·mol |
Appearance | white crystalline solid, non-volatile, highly polymerized, needle-like crystals |
Density | 1.477 g/cm, solid |
Melting point | 150 °C (302 °F; 423 K) starts decomposing at 105 °C (221 °F) |
Solubility in water | reacts |
Solubility | soluble in ether reacts in ethanol |
Thermochemistry | |
Heat capacity (C) | 40.2 J/(mol·K) |
Std molar entropy (S298) |
30 J/(mol·K) |
Std enthalpy of formation (ΔfH298) |
−11.4 kJ/mol |
Gibbs free energy (ΔfG) | 46.4 kJ/mol |
Related compounds | |
Related compounds | Lithium aluminium hydride, diborane |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Aluminium hydride (also known as alane and alumane) is an inorganic compound with the formula AlH3.Solid alane is colorless and nonvolatile. While not spontaneously flammable, alane solids and solutions require precautions in use akin to other highly flammable metal hydrides, and must be handled and stored with the active exclusion of moisture. Alane decomposes on exposure to air (principally because of adventitious moisture), though passivation — here, allowing for development of an inert surface coating — greatly diminishes the rate of decomposition of alane preparations. It decomposes at 150 °C. The solid form, however, often presents as a white solid that may be tinted grey (with decreasing reagent particle size or increasing impurity levels). This coloration arises from a thin surface passivation layer of aluminium oxide or hydroxide.
Under common laboratory conditions, alane is "highly polymeric", structurally. This is sometimes indicated with the formula (AlH3)n, where n is left unspecified. Preparations of alane dissolve in tetrahydrofuran (THF) or diethyl ether (ether), from which pure allotropes precipitate.
Structure
Alane can adopt numerous polymorphic forms. By 2006, "at least 7 non-solvated AlH3 phases" were known: α-, α’-, β-, γ-, ε-, and ζ-alanes; the δ- and θ-alanes have subsequently been discovered. α-Alane is the most thermally stable polymorph. According to X-ray crystallography, α-alane adopts a cubic or rhombohedral morphology. It features aluminium atoms surrounded by six octahedrally oriented hydrogen atoms that bridge to six other aluminium atoms (see table). The Al-H distances are all equivalent (172 pm) and the Al-H-Al angle is 141°. α’-Alane forms needle-like crystals, and γ-alane forms bundles of fused needles.
Crystallographic Structure of α-AlH3 | |||||
---|---|---|---|---|---|
The α-AlH3 unit cell | Aluminium coordination | Hydrogen coordination | |||
When β- and γ-alanes are produced together, they convert to α-alane upon heating, while δ-, ε-, and θ-alanes are produced in still other crystallization conditions; although they are less thermally stable, the δ-, ε-, and θ-alane polymorphs do not convert to α-alane upon heating.
Under special conditions, non-polymeric alanes (i.e., molecular forms of it) can be prepared and studied. Monomeric AlH3 has been isolated at low temperature in a solid noble gas matrix where it was shown to be planar. The dimeric form, Al2H6, has been isolated in solid hydrogen, and it is isostructural with diborane (B2H6) and digallane (Ga2H6).
Handling
Alane is not spontaneously flammable. Even so, "similar handling and precautions as... exercised for Li[AlH4]" (the chemical reagent, lithium aluminium hydride) are recommended, as its "reactivity comparable" to this related reducing reagent. For these reagents, both preparations in solutions and isolated solids are "highly flammable and must be stored in the absence of moisture". Laboratory guides recommend alane use inside a fume hood. Solids of this reagent type carry recommendations of handling "in a glove bag or dry box". After use, solution containers are typically sealed tightly with concomitant flushing with inert gas to exclude the oxygen and moisture of ambient air.
Passivation greatly diminishes the decomposition rate associated with alane preparations. Passivated alane nevertheless retains a hazard classification of 4.3 (chemicals which in contact with water, emit flammable gases).
Reported accidents
This section needs expansion with: a careful, source-derived presentation of accidents known to be associated with use of this agent, at small and large scale. You can help by adding to it. (July 2022) |
Alane reductions are believed to proceed via an intermediate coordination complex, with aluminum attached to the partially reduced functional group, and liberated when the reaction undergoes protic quenching. If the substrate is also fluorinated, the intermediate may instead explode if exposed to a hot spot above 60°C.
Preparation
Aluminium hydrides and various complexes thereof have long been known. Its first synthesis was published in 1947, and a patent for the synthesis was assigned in 1999. Aluminium hydride is prepared by treating lithium aluminium hydride with aluminium trichloride. The procedure is intricate: attention must be given to the removal of lithium chloride.
- 3 Li[AlH4] + AlCl3 → 4 AlH3 + 3 LiCl
The ether solution of alane requires immediate use, because polymeric material rapidly precipitates as a solid. Aluminium hydride solutions are known to degrade after 3 days. Aluminium hydride is more reactive than Li[AlH4].
Several other methods exist for the preparation of aluminium hydride:
- 2 Li[AlH4] + BeCl2 → 2 AlH3 + Li2[BeH2Cl2]
- 2 Li[AlH4] + H2SO4 → 2 AlH3 + Li2SO4 + 2 H2
- 2 Li[AlH4] + ZnCl2 → 2 AlH3 + 2 LiCl + ZnH2
- 2 Li[AlH4] + I2 → 2 AlH3 + 2 LiI + H2
Electrochemical synthesis
Several groups have shown that alane can be produced electrochemically. Different electrochemical alane production methods have been patented. Electrochemically generating alane avoids chloride impurities. Two possible mechanisms are discussed for the formation of alane in Clasen's electrochemical cell containing THF as the solvent, sodium aluminium hydride as the electrolyte, an aluminium anode, and an iron (Fe) wire submerged in mercury (Hg) as the cathode. The sodium forms an amalgam with the Hg cathode preventing side reactions and the hydrogen produced in the first reaction could be captured and reacted back with the sodium mercury amalgam to produce sodium hydride. Clasen's system results in no loss of starting material. For insoluble anodes, reaction 1 occurs, while for soluble anodes, anodic dissolution is expected according to reaction 2:
- [AlH4] − e + n THF → AlH3·nTHF + 1/2 H2
- 3 [AlH4] + Al − 3 e + 4n THF → 4 AlH3·nTHF
In reaction 2, the aluminium anode is consumed, limiting the production of aluminium hydride for a given electrochemical cell.
The crystallization and recovery of aluminium hydride from electrochemically generated alane has been demonstrated.
High pressure hydrogenation of aluminium
α-AlH3 can be produced by hydrogenation of aluminium at 10 GPa and 600 °C (1,112 °F). The reaction between the liquified hydrogen produces α-AlH3 which could be recovered under ambient conditions.
Reactions
Formation of adducts with Lewis bases
AlH3 readily forms adducts with strong Lewis bases. For example, both 1:1 and 1:2 complexes form with trimethylamine. The 1:1 complex is tetrahedral in the gas phase, but in the solid phase it is dimeric with bridging hydrogen centres, [(CH3)3NAlH2(μ-H)]2. The 1:2 complex adopts a trigonal bipyramidal structure. Some adducts (e.g. dimethylethylamine alane, (CH3CH2)(CH3)2N·AlH3) thermally decompose to give aluminium and may have use in MOCVD applications.
Its complex with diethyl ether forms according to the following stoichiometry:
- AlH3 + (CH3CH2)2O → (CH3CH2)2O·AlH3
Similar adducts are assumed to form when alane is generated in THF from lithium aluminium hydride.
The reaction with lithium hydride in ether produces lithium aluminium hydride:
- AlH3 + LiH → Li[AlH4]
Various alanates have been characterized beyond lithium aluminium hydride. They tend to feature five- and six-coordinate Al centers: Na
3AlH
6, Ca(AlH
4))
2, SrAlH
5).
Reduction of functional groups
Alane and its derivatives are reducing reagents in organic synthesis based around group 13 hydrides. In solution—typically in ethereal solvents such tetrahydrofuran or diethyl ether—aluminium hydride forms complexes with Lewis bases, and reacts selectively with particular organic functional groups (e.g., with carboxylic acids and esters over organic halides and nitro groups), and although it is not a reagent of choice, it can react with carbon-carbon multiple bonds (i.e., through hydroalumination). Given its density, and with hydrogen content on the order of 10% by weight, some forms of alane are, as of 2016, active candidates for storing hydrogen and so for power generation in fuel cell applications, including electric vehicles. As of 2006 it was noted that further research was required to identify an efficient, economical way to reverse the process, regenerating alane from spent aluminium product.
In organic chemistry, aluminium hydride is mainly used for the reduction of functional groups. In many ways, the reactivity of aluminium hydride is similar to that of lithium aluminium hydride. Aluminium hydride will reduce aldehydes, ketones, carboxylic acids, anhydrides, acid chlorides, esters, and lactones to their corresponding alcohols. Amides, nitriles, and oximes are reduced to their corresponding amines.
In terms of functional group selectivity, alane differs from other hydride reagents. For example, in the following cyclohexanone reduction, lithium aluminium hydride gives a trans:cis ratio of 1.9 : 1, whereas aluminium hydride gives a trans:cis ratio of 7.3 : 1.
Alane enables the hydroxymethylation of certain ketones (that is the replacement of C−H by C−CH2OH at the alpha position). The ketone itself is not reduced as it is "protected" as its enolate.
Organohalides are reduced slowly or not at all by aluminium hydride. Therefore, reactive functional groups such as carboxylic acids can be reduced in the presence of halides.
Nitro groups are not reduced by aluminium hydride. Likewise, aluminium hydride can accomplish the reduction of an ester in the presence of nitro groups.
Aluminium hydride can be used in the reduction of acetals to half protected diols.
Aluminium hydride can also be used in epoxide ring opening reaction as shown below.
The allylic rearrangement reaction carried out using aluminium hydride is a SN2 reaction, and it is not sterically demanding.
Aluminium hydride will reduce carbon dioxide to methane with heating:
- 4 AlH3 + 3 CO2 → 3 CH4 + 2 Al2O3
Hydroalumination
This section needs expansion. You can help by adding to it. (July 2022) |
Akin to hydroboration, aluminium hydride can, in the presence of titanium tetrachloride, add across multiple bonds. When the multiple bond in question is a propargylic alcohols, the results are Alkenylaluminium compounds.
Fuel
This section needs to be updated. Please help update this article to reflect recent events or newly available information. (July 2022) |
In its passivated form, alane is an active candidate for storing hydrogen, and can be used for efficient power generation via fuel cell applications, including fuel cell and electric vehicles and other lightweight power applications. AlH3 contains up 10.1% hydrogen by weight (at a density of 1.48 grams per milliliter), or twice the hydrogen density of liquid H2. As of 2006, AlH3 was described as a candidate for which "further research w be required to develop an efficient and economical process to regenerate from the spent Al powder".
Alane is also a potential additive to solid rocket fuel and to explosive and pyrotechnic compositions due to its high hydrogen content and low dehydrogenation temperature. In its unpassivated form, alane is also a promising rocket fuel additive, capable of delivering impulse efficiency gains of up to 10%. However, AlH3 can degrade when stored at room temperature, and some of its crystal forms have "poor compatibility" with some fuel components.
Deposition
Heated alane releases hydrogen gas and produces a very fine thin film of aluminum metal.
References
- ^ Galatsis, P; Sintim, Herman O.; Wang J. (15 September 2008). "Aluminum Hydride". Encyclopedia of Reagents for Organic Synthesis (online ed.). New York, N.Y.: John Wiley & Sons. doi:10.1002/047084289X.ra082.pub2. ISBN 978-0471936237. Retrieved 28 July 2022.
- ^ Housecroft, C. E.; Sharpe, A. G. (2018). Inorganic Chemistry (5th ed.). Prentice-Hall. p. 401. ISBN 978-0273742753.
- See, e.g., Andrews & Wang 2003.
- ^ US application 2007066839, Lund, G. K.; Hanks, J. M.; Johnston, H. E., "Method for the Production of α-Alane."
- ^ Graetz, J..; Reilly, J..; Sandrock, G..; Johnson, J..; Zhou, W.-M.; Wegrzyn, J. (2006). Aluminum Hydride, A1H3, As a Hydrogen Storage Compound (Report). Washington, D.C.: Office of Science and Technical Information . doi:10.2172/899889. OSTI 899889. Retrieved 28 July 2022.
- Turley & Rinn 1969. (Abstract) "The final Al⋯H distance of 1.72 Å, the participation of each Al in six bridges, and the equivalence of all Al⋯H distances suggest that 3c-2e bonding occurs." Angle is lasted as "Al(6)-H(5)-Al(4)" in Table IV.
- Turley, J. W.; Rinn, H. W. (1969). "The Crystal Structure of Aluminum Hydride". Inorganic Chemistry. 8 (1): 18–22. doi:10.1021/ic50071a005.
- Kurth, F. A.; Eberlein, R. A.; Schnöckel, H.-G.; Downs, A. J.; Pulham, C. R. (1993). "Molecular Aluminium Trihydride, AlH3: Generation in a Solid Noble Gas Matrix and Characterisation by its Infrared Spectrum and ab initio Calculations". Journal of the Chemical Society, Chemical Communications. 1993 (16): 1302–1304. doi:10.1039/C39930001302. (Abstract) Broad-band photolysis of a solid noble gas matrix containing Al atoms and H2 gives rise to the planar, monomeric AlH3 molecule.
- Andrews, Lester; Wang Xuefeng (2003). "The Infrared Spectrum of Al2H6 in Solid Hydrogen". Science. 299 (5615): 2049–2052. Bibcode:2003Sci...299.2049A. doi:10.1126/science.1082456. JSTOR 3833717. PMID 12663923. S2CID 45856199. See also emendations at doi:10.1126/science.300.5620.741a.
- Pulham, C. R.; Downs, A. J.; Goode, M. J.; Rankin D. W. H.; Robertson, H. E. (1991). "Gallane: Synthesis, Physical and Chemical Properties, and Structure of the Gaseous Molecule Ga2H6 as Determined by Electron Diffraction". Journal of the American Chemical Society. 113 (14): 5149–5162. doi:10.1021/ja00014a003.
- Housecroft, Catherine (2018). Inorganic Chemistry (5th ed.). Pearson. p. 397. ISBN 978-1-292-13414-7.
- Galatsis, Sintim & Wang 2008, which describes the phenomenon using the synonym "inflammable".
- ^ Paquette, L. A.; Ollevier, T.; Desyroy, V. (15 October 2004). "Lithium Aluminum Hydride". Encyclopedia of Reagents for Organic Synthesis (online ed.). New York, N.Y.: John Wiley & Sons. doi:10.1002/047084289X.rl036.pub2. ISBN 0471936235. Retrieved 28 July 2022.
- 2013 CFR Title 29 Volume 6 Section 1900.1200 Appendix B.12
- Taydakov, Ilya V. (2020-07-08). "Serious Explosion during Large-Scale Preparation of an Amine by Alane (AlH3) Reduction of a Nitrile Bearing a CF3 Group". ACS Chemical Health & Safety. 27 (4). American Chemical Society (ACS): 235–239. doi:10.1021/acs.chas.0c00045. ISSN 1871-5532. S2CID 225542103.
- Brower, F. M.; Matzek, N. E.; Reigler, P. F.; Rinn, H. W.; Schmidt, D. L.; Snover, J. A.; Terada, K. (1976). "Preparation and Properties of Aluminum Hydride". Journal of the American Chemical Society. 98 (9): 2450–2454. doi:10.1021/ja00425a011.
- Finholt, A. E.; Bond, A. C. Jr.; Schlesinger, H. I. (1947). "Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry". Journal of the American Chemical Society. 69 (5): 1199–1203. doi:10.1021/ja01197a061.
- US patent 6228338, Petrie, M. A.; Bottaro, J. C.; Schmitt, R. J.; Penwell, P. E.; Bomberger, D. C., "Preparation of Aluminum Hydride Polymorphs, Particularly Stabilized α-AlH3", issued 2001-05-08
- Schmidt, D. L.; Roberts, C. B.; Reigler, P. F.; Lemanski, M. F. Jr.; Schram, E. P. (1973). "Aluminum Trihydride-diethyl etherate ( Etherated Alane )". Inorganic Syntheses. Vol. 14. pp. 47–52. doi:10.1002/9780470132456.ch10. ISBN 9780470132456.
- Alpatova, N. M.; Dymova, T. N.; Kessler, Yu. M.; Osipov, O. R. (1968). "Physicochemical Properties and Structure of Complex Compounds of Aluminium Hydride". Russian Chemical Reviews. 37 (2): 99–114. Bibcode:1968RuCRv..37...99A. doi:10.1070/RC1968v037n02ABEH001617. S2CID 250839118.
- Semenenko, K. N.; Bulychev, B. M.; Shevlyagina, E. A. (1966). "Aluminium Hydride". Russian Chemical Reviews. 35 (9): 649–658. Bibcode:1966RuCRv..35..649S. doi:10.1070/RC1966v035n09ABEH001513. S2CID 250889877.
- Osipov, O. R.; Alpatova, N. M.; Kessler, Yu. M. (1966). Elektrokhimiya. 2: 984.
{{cite journal}}
: CS1 maint: untitled periodical (link) - ^ Zidan, R.; Garcia-Diaz, B. L.; Fewox, C. S.; Stowe, A. C.; Gray, J. R.; Harter, A. G. (2009). "Aluminium hydride: a reversible material for hydrogen storage". Chemical Communications (25): 3717–3719. doi:10.1039/B901878F. PMID 19557259. S2CID 21479330.
- ^ Martinez-Rodriguez, M. J.; Garcia-Diaz, B. L.; Teprovich, J. A.; Knight, D. A.; Zidan, R. (2012). "Advances in the electrochemical regeneration of aluminum hydride". Applied Physics A: Materials Science & Processing. 106 (25): 545–550. Bibcode:2012ApPhA.106..545M. doi:10.1007/s00339-011-6647-y. S2CID 93879202.
- DE patent 1141623, Clasen, H., "Verfahren zur Herstellung von Aluminiumhydrid bzw. aluminiumwasserstoffreicher komplexer Hydride", issued 1962-12-27, assigned to Metallgesellschaft
- US patent 8470156, Zidan, R., "Electrochemical process and production of novel complex hydrides", issued 2013-06-25, assigned to Savannah River Nuclear Solutions, LLC
- Saitoh, H; Sakurai, Y; Machida, A; Katayama, Y; Aoki, K (2010). "In situX-ray diffraction measurement of the hydrogenation and dehydrogenation of aluminum and characterization of the recovered AlH3". Journal of Physics: Conference Series. 215 (1): 012127. Bibcode:2010JPhCS.215a2127S. doi:10.1088/1742-6596/215/1/012127. ISSN 1742-6596.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- Atwood, J. L.; Bennett, F. R.; Elms, F. M.; Jones, C.; Raston, C. L.; Robinson, K. D. (1991). "Tertiary Amine Stabilized Dialane". Journal of the American Chemical Society. 113 (21): 8183–8185. doi:10.1021/ja00021a063.
- Yun, J.-H.; Kim, B.-Y.; Rhee, S.-W. (1998). "Metal-Organic Chemical Vapor Deposition of Aluminum from Dimethylethylamine Alane". Thin Solid Films. 312 (1–2): 259–263. Bibcode:1998TSF...312..259Y. doi:10.1016/S0040-6090(97)00333-7.
- Suárez-Alcántara, Karina; Tena-Garcia, Juan Rogelio; Guerrero-Ortiz, Ricardo (2019). "Alanates, a Comprehensive Review". Materials. 12 (17): 2724. Bibcode:2019Mate...12.2724S. doi:10.3390/ma12172724. PMC 6747775. PMID 31450714.
- Brown, H. C.; Krishnamurthy, S. (1979). "Forty Years of Hydride Reductions". Tetrahedron. 35 (5): 567–607. doi:10.1016/0040-4020(79)87003-9.
- Lin-Lin Wang; Aditi Herwadkar; Jason M. Reich; Duane D. Johnson; Stephen D. House; Pamela Peña-Martin; Angus A. Rockett; Ian M. Robertson; Shalabh Gupta; Vitalij K. Pecharsky (2016). "Towards Direct Synthesis of Alane: A Predicted Defect-Mediated Pathway Confirmed Experimentally". ChemSusChem. 9 (17): 2358–2364. Bibcode:2016ChSCh...9.2358W. doi:10.1002/cssc.201600338. PMID 27535100.
- Galatsis, P. (2001). "Diisobutylaluminum Hydride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rd245. ISBN 978-0-470-84289-8.
- Ayres, D. C.; Sawdaye, R. (1967). "The Stereoselective Reduction of Ketones by Aluminium Hydride". Journal of the Chemical Society B. 1967: 581–583. doi:10.1039/J29670000581.
- Corey, E. J.; Cane, D. E. (1971). "Controlled Hydroxymethylation of Ketones". Journal of Organic Chemistry. 36 (20): 3070. doi:10.1021/jo00819a047.
- Jorgenson, Margaret J. (July 1962). "Selective reductions with aluminum hydride". Tetrahedron Letters. 3 (13): 559–562. doi:10.1016/S0040-4039(00)76929-2.
- Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. (1983). "A Facile Cleavage of Benzylidene Acetals with Diisobutylaluminum Hydride" (pdf). Chemistry Letters. 12 (10): 1593–1596. doi:10.1246/cl.1983.1593.
- Richter, W. J. (1981). "Asymmetric Synthesis at Prochiral Centers: Substituted 1,3-Dioxolanes". Journal of Organic Chemistry. 46 (25): 5119–5124. doi:10.1021/jo00338a011.
- Maruoka, K.; Saito, S.; Ooi, T.; Yamamoto, H. (1991). "Selective Reduction of Methylenecycloalkane Oxides with 4-Substituted Diisobutylaluminum 2,6-Di-tert-butylphenoxides". Synlett. 1991 (4): 255–256. doi:10.1055/s-1991-20698. S2CID 196795254.
- Claesson, A.; Olsson, L.-I. (1979). "Allenes and Acetylenes. 22. Mechanistic Aspects of the Allene-Forming Reductions (SN2' Reaction) of Chiral Propargylic Derivatives with Hydride Reagents". Journal of the American Chemical Society. 101 (24): 7302–7311. doi:10.1021/ja00518a028.
- Sato, F.; Sato, S.; Kodama, H.; Sato, M. (1977). "Reactions of Lithium Aluminum Hydride or Alane with Olefins Catalyzed by Titanium Tetrachloride or Zirconium Tetrachloride. A Convenient Route to Alkanes, 1-Haloalkanes and Terminal Alcohols from Alkenes". Journal of Organometallic Chemistry. 142 (1): 71–79. doi:10.1016/S0022-328X(00)91817-5.
- Smith (2020), March's Advanced Organic Chemistry, rxn. 15-12.
- Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. (1967). "New Stereospecific Synthesis of Trisubstituted Olefins. Stereospecific Synthesis of Farnesol". Journal of the American Chemical Society. 89 (16): 4245–4247. doi:10.1021/ja00992a065.
- ^ Liu, Y.; Yang, F.; Zhang, Y.; Wu, Z.; Zhang, Z. (2024). "AlH3 as High-Energy Fuels for Solid Propellants: Synthesis, Thermodynamics, Kinetics, and Stabilization". Compounds. 4 (2): 230–251. doi:10.3390/compounds4020012.
- Calabro, M. (2011). "Overview of Hybrid Propulsion". Progress in Propulsion Physics. 2: 353–374. Bibcode:2011EUCAS...2..353C. doi:10.1051/eucass/201102353. ISBN 978-2-7598-0673-7.
Further reading
- Schmidt, Eckart W. (2022). "Aluminum Hydride". Metals of the 2nd and 3rd Row and their Hydrides. Encyclopedia of Liquid Fuels. De Gruyter. pp. 3799–3827. doi:10.1515/9783110750287-032. ISBN 978-3-11-075028-7.
External links
- Aluminium Hydride on EnvironmentalChemistry.com Chemical Database
- Hydrogen Storage from Brookhaven National Laboratory
- Aluminum Trihydride on WebElements
Aluminium compounds | |||||
---|---|---|---|---|---|
Al(I) |
| ||||
Al(II) | |||||
Al(III) |
|
Binary compounds of hydrogen | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alkali metal (Group 1) hydrides | |||||||||||||||||||
Alkaline (Group 2) earth hydrides |
| ||||||||||||||||||
Group 13 hydrides |
| ||||||||||||||||||
Group 14 hydrides |
| ||||||||||||||||||
Pnictogen (Group 15) hydrides |
| ||||||||||||||||||
Hydrogen chalcogenides (Group 16 hydrides) |
| ||||||||||||||||||
Hydrogen halides (Group 17 hydrides) |
| ||||||||||||||||||
Transition metal hydrides | |||||||||||||||||||
Lanthanide hydrides | |||||||||||||||||||
Actinide hydrides | |||||||||||||||||||
Exotic matter hydrides |