Misplaced Pages

Talk:0.999...

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 213.216.199.18 (talk) at 20:35, 6 May 2005. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 20:35, 6 May 2005 by 213.216.199.18 (talk)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

I created this page in response to two threads I saw and the confusion that arose. Figured it was something worth noting. --BradBeattie 18:58, 6 May 2005 (UTC)

I think you are right. I submitted it first for deletion because the title looked a bit misleading. This is not a series of nines, the series is if you wish of
9 10 n {\displaystyle {\frac {9}{10^{n}}}}

Cheers, Oleg Alexandrov 19:01, 6 May 2005 (UTC)

True, the title was a little slap-dash. Thanks for the improvement. --BradBeattie 19:03, 6 May 2005 (UTC)


"In mathematics, one could easily fall in the trap of thinking that while 0.999... is certainly close to 1, nevertheless the two are not equal. Here's a proof that they actually are."

0,999... is irrational and so is the article. Basis on "the proof" that 0.9999...=1 one could argue that irrational is rational which is simply jargon.


How about 999 1000 {\displaystyle {\frac {999\ldots }{1000\ldots }}} ? Might want to take a look at limits. --BradBeattie 20:16, 6 May 2005 (UTC)

If 0.999... is 1 then the whole basis of mathematics should be re-written. Mathematics is considered to be exact science. If 0.999... was EXACT 1 then it would not make any difference to say exempli gratia (for example) that domain is same than [0,1[ or 0.000...0001 is 0 which is the basis of differential calculus. One should not confuse the concept of irrationality with the concept rationality, or infinity with finity, or inexact with exact.