Misplaced Pages

Gravity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 193.164.126.35 (talk) at 10:44, 7 June 2007 (History of gravitational theory). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 10:44, 7 June 2007 by 193.164.126.35 (talk) (History of gravitational theory)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) For other uses, see Gravity (disambiguation). "Gravity" redirects here. For other uses, see Gravity (disambiguation).

Gravitation is a natural phenomenon by which all objects attract each other. In everyday life, gravitation is most familiar as the agency that endows objects with weight. Gravitation is responsible for keeping the Earth and the other planets in their orbits around the Sun; for keeping the Moon in its orbit around the Earth; for the formation of tides; for convection (by which hot fluids rise); for heating the interiors of forming stars and planets to very high temperatures; and for various other phenomena that we observe. Gravitation is also the reason for the very existence of the Earth, the Sun, and most macroscopic objects in the universe; without it, matter would not have coalesced into these large masses, and life, as we know it, would not exist.

Modern physics describes gravitation using the general theory of relativity, but the much simpler Newton's law of universal gravitation provides an excellent approximation in most cases.

In scientific terminology gravitation and gravity are distinct. "Gravitation" is the attractive influence that all objects exert on each other, while "gravity" specifically refers to a force which all massive (objects with mass) objects are theorized to exert on each other to cause gravitation. Although these terms are interchangeable in everyday use, in theories other than Newton's, gravitation is caused by factors other than gravity. For example in general relativity, gravitation is due to spacetime curvatures which causes inertially moving objects to tend to accelerate towards each other. Another (discredited) example is Le Sage's theory of gravitation, in which massive objects are effectively pushed towards each other.

The gravitational force keeps the planets in orbit about the Sun.

CAts!!!!!

Specifics

Earth's gravity

Main article: Earth's gravity

Every planetary body, including the Earth, is surrounded by its own gravitational field, which exerts an attractive force on any object. This field is proportional to the body's mass and varies inversely with the square of distance from the body. The gravitational field is numerically equal to the acceleration of objects under its influence, and its value at the Earth's surface, denoted g, is approximately 9.8 m/s². This means that, ignoring air resistance, an object falling freely near the earth's surface increases in speed by 9.807 m/s (32.174 ft/s or 22 mi/h) for each second of its descent. Thus, an object starting from rest will attain a speed of 9.807 m/s (32.17 ft/s) after one second, 19.614 m/s (64.34 ft/s) after two seconds, and so on. According to Newton's 3rd Law, the Earth itself experiences an equal and opposite force to that acting on the falling object, meaning that the Earth also accelerates towards the object. However, because the mass of the Earth is huge, the measurable acceleration of the Earth by this same force is negligible, when measured relative to the system's center of mass.

Equations for a falling body

Main article: Equations for a falling body

Under normal Earth-bound conditions, when objects move owing to a constant gravitational force a set of kinematical and dynamical equations describe the resultant trajectories. For example, Newton’s law of gravitation simplifies to F = ma, where m is the mass of the body and a is the acceleration. This assumption is reasonable for objects falling to Earth over the relatively short vertical distances of our everyday experience, but does not necessarily hold over larger distances, such as spacecraft trajectories, because the acceleration far from the surface of the Earth will not in general be g which is acceleration due to gravity (9.8 m/s). A further example is the expression that we use for the calculation of potential energy Ep of a body at height h ( Ep = mgh or as Ep = Wh, with W meaning weight). This expression can be used only over small distances h from the Earth. Similarly the expression for the maximum height reached by a vertically projected body, h = u 2 / 2 g {\displaystyle h=u^{2}/2g} is useful for small heights and small initial velocities only. In case of large initial velocities we have to use the principle of conservation of energy to find the maximum height reached.

Gravity and astronomy

Main article: Gravity (astronomy)

The discovery and application of Newton's law of gravity accounts for the detailed information we have about the planets in our solar system, the mass of the Sun, the distance to stars, quasars and even the theory of dark matter. Although we have not traveled to all the planets nor to the Sun, we know their mass. The mass is obtained by applying the laws of gravity to the measured characteristics of the orbit. In space an object maintains its orbit because of the force of gravity acting upon it. Planets orbit stars, stars orbit galactic centers, galaxies orbit a center of mass in clusters, and clusters orbit in superclusters.

Alternative theories

Main article: Alternatives to general relativity

Historical alternative theories

Recent alternative theories

See also

Notes

  • Template:Fnb Proposition 75, Theorem 35: p.956 - I.Bernard Cohen and Anne Whitman, translators: Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy. Preceded by A Guide to Newton's Principia, by I. Bernard Cohen. University of California Press 1999 ISBN 0-520-08816-6 ISBN 0-520-08817-4
  • Template:Fnb Max Born (1924), Einstein's Theory of Relativity (The 1962 Dover edition, page 348 lists a table documenting the observed and calculated values for the precession of the perihelion of Mercury, Venus, and Earth.)

References

  • Halliday, David (2001). Physics v. 1. New York: John Wiley & Sons. ISBN 0-471-32057-9. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Serway, Raymond A. (2004). Physics for Scientists and Engineers (6th ed. ed.). Brooks/Cole. ISBN 0-534-40842-7. {{cite book}}: |edition= has extra text (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed. ed.). W. H. Freeman. ISBN 0-7167-0809-4. {{cite book}}: |edition= has extra text (help)

External links

Fundamental interactions of physics
Physical forces
Hypothetical forces
Categories: