This is an old revision of this page, as edited by 220.237.12.190 (talk) at 02:59, 2 September 2007 (→Anatomy & Physiology). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 02:59, 2 September 2007 by 220.237.12.190 (talk) (→Anatomy & Physiology)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Testicle | |
---|---|
File:Male anatomy.pngHuman male reproductive system and adjacent structures | |
Details | |
Artery | Testicular artery |
Vein | Testicular vein, Pampiniform plexus |
Nerve | Spermatic plexus |
Lymph | Lumbar lymph nodes |
Identifiers | |
Latin | testis |
MeSH | D013737 |
TA98 | A09.3.01.001 |
TA2 | 3576 |
FMA | 7210 |
Anatomical terminology[edit on Wikidata] |
The testicle (from Latin testis, meaning "witness" , plural testes) or ballock is the male generative gland in animals. This article will concentrate on mammalian testicles unless otherwise noted.
=====Cremasteric muscle uis to suck titties
=
The cremasteric muscle is part of the spermatic cord. When this muscle contracts, the cord is shortened and the testicle is moved closer up toward the body, which provides slightly more warmth to maintain optimal testicular temperature. When cooling is required, the cremasteric muscle relaxes and the testicle is lowered away from the warm body and is able to cool. This phenomenon is known as the cremasteric reflex. It also occurs in response to stress (the testicles rise up toward the body in an effort to protect them in a fight), and there are persistent reports that relaxation indicates approach of orgasm. There is a noticeable tendency to also retract during orgasm.
The testicles can also be lifted voluntarily using the pubococcygeus muscle, which partially activates related muscles. This can sometimes be triggered by tightening or sucking in the stomach or abdomen.
Development
There are two phases in which the testicles grow substantially, namely in embryonic and pubertal age.
Embryonic
During mammalian development, the gonads are at first capable of becoming either ovaries or testes. In humans, starting at about week 4 the gonadal rudiments are present within the intermediate mesoderm adjacent to the developing kidneys. At about week 6, epithelial sex cords develop within the forming testes and incorporate the germ cells as they migrate into the gonads. In males, certain Y chromosome genes, particularly SRY, control development of the male phenotype, including conversion of the early bipotential gonad into testes. In males, the sex cords fully invade the developing gonads.
Pubertal
The testicles grow in response to the start of spermatogenesis. Size depends on lytic function, sperm production (amount of spermatogenisis present in testis), interstitial fluid, and Sertoli cell fluid production. After puberty, the volume of the testicles can be increased by over 500% as compared to the pre-pubertal size. In humans the average testicle size after puberty measures up to be 2 inches long, 0.8 inch in breadth, and 1.2 inches in diameter (5 x 2 x 3 cm).
Evolution
External testicles
The basal condition for mammals is to have internal testicles. Only the Boreoeutherian land mammals, the large group of mammals that includes humans, have externalized testicles. Indeed their testicles function best at temperatures lower than their core body temperature. Their testes are located outside of the body, suspended by the spermatic cord within the scrotum. The testes of the non-boreotherian mammals such as the monotremes, armadillos, sloths, elephants remain within the abdomen.. There are also some Boreoeutherian mammals with internal testes, such as the rhinoceros.
Marine boreotherian mammals such as whales and dolphins, also have internal testes, but it has recently been shown (e.g., for dolphins) that they use elaborate vascular networks to provide the necessary temperature lowering for optimum function. As external testes would increase drag, many boreotherian aquatic mammals have internal testes which are kept cool by special circulatory systems that cool the arterial blood going to the testes by placing the arteries near veins bringing cooled venous blood from the skin.
There are several hypotheses why most boreotherian mammals have external testes which operate best at a temperature that is slightly less than the core body temperature, e.g. that it is stuck with enzymes evolved in a colder temperature due to external testes evolving for different, that it the lower temperature of the testes simply is more efficient for sperm production.
1) More efficient. The classic hypothesis is that cooler temperature of the testes allows for more efficient fertile spermatogenesis. In other words, there are no possible enzymes operating at normal core body temperature that are as efficient as the ones evolved, at least no ones appearing in our evolution so far.
The early mammals had lower body temperatures and thus their testes worked efficiently within their body. However it is argued that boreotherian mammals have higher body temperatures than the other mammals and had to develop external testicles to keep them cool. It is argued that those mammals with internal testicles, such as the monotremes, armadillos, sloths, elephants, and rhinoceroses, have a lower core body temperatures than those mammals with external testicles.
However, the question remains why birds despite having very high core body temperatures have internal testes and did not evolve external testes. It was once theorized that birds used their air sacs to cool the testes internally, but later studies revealed that birds' testes are able to function at core body temperature..
2) Irreversible adaptation to sperm competition. It has been suggested that the ancestor of the boreoeutherian mammals was a small mammal that required very large testes (perhaps rather like those of a hamster) for sperm competition and thus had to place its testes outside the body. This led to enzymes involved in spermatogenesis, spermatogenic DNA polymerase beta and recombinase activities evolving a unique temperature optimum, slightly less than core body temperature. When the boreoeutherian mammals then diversified into forms that were larger and/or did not require intense sperm competition they were stuck with enzymes that operated best at cooler temperatures and had to keep their testicles outside the body.
3) Protection from abdominal cavity pressure changes. One argument for the evolution of external testes is that it protects the testes from abdominal cavity pressure changes caused by jumping and galloping .
Testicular size
Testicular size as a proportion of body weight varies widely. In the mammalian kingdom, there is a tendency for testicular size to correspond with multiple mates (e.g., harems, polygamy). Production of testicular output sperm and spermatic fluid is also larger in polygamous animals, possibly a spermatogenic competition for survival. The testicles of the right whale are likely to be the largest of any animal, each weighing around 500 kg (1,100 lbs).
Non-mammalian testes
Health issues
The testicles are well-known to be very sensitive to impact and injury.
The most prominent diseases of testicles are:
- testicular cancer and other neoplasms
- swelling of a testicle, caused by hydrocele testis
- inflammation of the testicles, called orchitis
- inflammation of the epididymis, called epididymitis
- spermatic cord torsion also called testicular torsion
- varicocele — swollen vein from the testes, usually affecting the left testicle
- anorchidism is the absence of one or both testicles.
The removal of one or both testicles is termed
- orchidectomy, in medicine (where orchiectomy and orchectomy are synonymous), and
- castration in general use, especially when done as punishment or torture, or as a catch-all term for orchidectomy in a veterinary context.
- Gelding in the specifically equine sense.
Testicular prostheses are available to mimic the appearance and feel of one or both testicles, when absent as from injury or as treatment for gender identity disorder. There have also been some instances of their implanting in dogs.
Consumption of testicles
Additional images
- Testicle of a cat: 1 Extremitas capitata, 2 Extremitas caudata, 3 Margo epididymalis, 4 Margo liber, 5 Mesorchium, 6 Epididymis, 7 testicular artery and vene, 8 Ductus deferens
- Testis surface
- Testis cross section
- The right testis, exposed by laying open the tunica vaginalis.
References
- http://www.blackwell-synergy.com/doi/pdf/10.1046/j.1464-410X.2002.02783.x?cookieSet=1
- Online textbook: "Developmental Biology" 6th ed. By Scott F. Gilbert (2000) published by Sinauer Associates, Inc. of Sunderland (MA).
- ^ http://www.biolreprod.org/cgi/reprint/56/6/1570.pdf BIOLOGY OF REPRODUCTION 56, 1570-1575 (1997)- Determination of Testis Temperature Rhythms and Effects of Constant Light on Testicular Function in the Domestic Fowl (Gallus domesticus)
- Newscientist.com - bumpy-lifestyle-led-to-external-testes
See also
- Anorchia
- cryptorchidism (cryptorchismus)
- Polyorchidism
- infertility
- List of homologues of the human reproductive system
- orchidometer
- spermatogenesis
- sterilization (surgical procedure), vasectomy
- Epididymis
- Spermatic cord
- Penis
- Ovary
- Geier Hitch
- Bollocks
- WikiSaurus:testicles — the WikiSaurus list of synonyms and slang words for testicles in many languages
Anatomy of the endocrine system | |||||
---|---|---|---|---|---|
Pituitary gland |
| ||||
Thyroid | |||||
Parathyroid gland | |||||
Adrenal gland |
| ||||
Gonads | |||||
Islets of pancreas | |||||
Pineal gland | |||||
Other |