Misplaced Pages

Cold fusion

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Pcarbonn (talk | contribs) at 11:27, 24 December 2007 (Further information: sort books by date, add video of 1989 press release, rmv news for lack of notability). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 11:27, 24 December 2007 by Pcarbonn (talk | contribs) (Further information: sort books by date, add video of 1989 press release, rmv news for lack of notability)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Two other uses

Cold fusion cell at the US Navy Space and Naval Warfare Systems Center San Diego (2005)

Cold fusion is the concept of a nuclear fusion reaction occurring at conditions near room temperature and atmospheric pressure.

The idea was brought into public consciousness by an announcement made in 1989 by the chemists Stanley Pons and Martin Fleischmann at the University of Utah that they had generated excess heat that could only be explained by the occurrence of a nuclear reaction. They had used only a very simple process: a pair of electrodes immersed in heavy water. Their claims, if true, would lead to revolutionary energy production technology, but they conflict with established nuclear reaction physics. Early attempts to replicate the effect were unsuccessful, after which cold fusion gained a reputation as an example of pathological science.

The United States Department of Energy convened two panels to investigate their claims, the first one in 1989, the second one in 2004. They did not find the evidence convincing enough to justify a federally-funded program, though they did recommend further research. There are now nearly 200 published reports of anomalous power and over 60 of anomalous tritium production - mostly in non-mainstream publications, with a few in peer-reviewed journals.

Experimental reports

Measurement of excess heat

The cold fusion researchers presenting their review document to the 2004 DoE panel on cold fusion said that the possibility of calorimetric errors has been carefully considered, studied, tested and ultimately rejected. They said that over 50 experiments conducted by SRI International showed excess power well above the accuracy of measurement. Arata and Zhang said they observed excess heat power averaging 80 watts over 12 days. The researchers also said that the amount of energy reported in some of the experiments appeared to be too great compared to the small mass of the material in the cell for it to be stored by any chemical process. They said that their control experiments using light water never showed excess heat.

When asked about the evidence for power that cannot be attributed to an ordinary chemical or solid state source, the 2004 DoE panel was evenly split. Many of the reviewers noted that poor experiment design, documentation, background control and other similar issues hampered the understanding and interpretation of the results presented to the DoE panel. The reviewers who did not find the production of excess power convincing said that excess power in the short term is not the same as net energy production over the entire time of an experiment, that all possible chemical and solid state causes of excess heat had not been investigated and eliminated as an explanation, that the magnitude of the effect had not increased after over a decade of work, and that production over a period of time is a few percent of the external power applied and hence calibration and systematic effects could account for the purported effect.

Other reported evidence of heat generation not reviewed by the DoE included the detection of infrared hot spots (see picture), the detection of mini-explosions by a piezoelectric substrate, and the observation of discrete sites exhibiting molten-like features that require substantial energy expenditure.

Nuclear products

A CR-39 detector showing possible nuclear activity in cold fusion experiments at SSC San Diego.

For a nuclear reaction to be proposed as the source of energy, it is necessary to show that the amount of energy is related to the amount of nuclear products. When asked about evidence of low energy nuclear reactions, twelve of the eighteen members of the 2004 DoE panel did not feel that there was any conclusive evidence, five found the evidence "somewhat convincing" and one was entirely convinced.

Although there appears to be evidence of anomalous transmutations and isotope shifts near the cathode surface in some experiments, cold fusion researchers generally consider that these anomalies are not the ash associated with the primary excess heat effect.

In 2007, Pamela Mosier-Bos and her team reported their observation of pits in CR-39 detectors during D/Pd codeposition experiments in the European Physical Journal. They said that those pits have features consistent with those observed for nuclear generated tracks, that the Pd cathode is the source of those pits, that they are not due to contamination or chemical reactions. They attributed some pits to knock-ons due to neutrons, and said that others are consistent with those obtained for α particles.

Arguments in the controversy

Reproducibility of the result

The cold fusion researchers presenting their review document to the 2004 DoE panel on cold fusion said that the observation of excess heat has been reproduced, that it can be reproduced at will under the proper conditions, and that many of the reasons for failure to reproduce it have been discovered. Despite the assertions of these researchers, most reviewers stated that the effects are not repeatable.

In 1989, the DoE panel said: "Even a single short but valid cold fusion period would be revolutionary. As a result, it is difficult convincingly to resolve all cold fusion claims since, for example, any good experiment that fails to find cold fusion can be discounted as merely not working for unknown reasons."

Cold fusion supporter Julian Schwinger said that it is not uncommon to have difficulty in reproducing a new phenomenon that involves ill-understood macroscopic control of a microscopic mechanism. As examples, he gave the onset of microchip studies, and the discovery of high-temperature superconductivity.

Current understanding of nuclear process

Cold fusion's most significant problem in the eyes of many scientists is that current theories describing conventional "hot" nuclear fusion cannot explain how a cold fusion reaction could occur at relatively low temperatures, and that there is currently no accepted theory to explain cold fusion. The 1989 DoE panel said: "Nuclear fusion at room temperature, of the type discussed in this report, would be contrary to all understanding gained of nuclear reactions in the last half century; it would require the invention of an entirely new nuclear process", but it also recognized that the lack of a satisfactory explanation cannot be used to dismiss experimental evidence.

Current understanding of hot nuclear fusion shows that the following explanations are not adequate:

  • Nuclear reaction in general: The average density of deuterium in the palladium rod seems vastly insufficient to force pairs of nuclei close enough for fusion to occur according to mechanisms known to mainstream theories. The average distance is approximately 0.17 nanometers, a distance at which the attractive strong nuclear force cannot overcome the Coulomb repulsion. Actually, deuterium atoms are closer together in D2 gas molecules, which do not exhibit fusion.
  • Absence of standard nuclear fusion products: if the excess heat were generated by the fusion of 2 deuterium atoms, the most probable outcome would be the generation of either a tritium atom and a proton, or a He and a neutron. The level of neutrons, tritium and He actually observed in Fleischmann-Pons experiment have been well below the level expected in view of the heat generated, implying that these fusion reactions cannot explain it.
  • Fusion of deuterium into helium 4: if the excess heat were generated by the hot fusion of 2 deuterium atoms into He, a reaction which is normally extremely rare, gamma rays and helium would be generated. Again, insufficient levels of helium and gamma rays have been observed to explain the excess heat, and there is no known mechanism to explain how gamma rays could be converted into heat.

History of cold fusion by electrolysis

The subject has been of scientific interest since nuclear fusion was first understood. Hot nuclear fusion using deuterium yields large amounts of energy, uses an abundant fuel source, and produces only small amounts of manageable waste. If this could be achieved at a lower temperature then a major new source of renewable energy would have been found.

Early work

The idea that palladium or titanium might catalyze fusion stems from the special ability of these metals to absorb large quantities of hydrogen (including its deuterium isotope), the hope being that deuterium atoms would be close enough together to induce fusion at ordinary temperatures. The special ability of palladium to absorb hydrogen was recognized in the nineteenth century. In the late nineteen-twenties, two German scientists, F. Paneth and K. Peters, reported the transformation of hydrogen into helium by spontaneous nuclear catalysis when hydrogen is absorbed by finely divided palladium at room temperature. These authors later acknowledged that the helium they measured was due to background from the air.

In 1927, Swedish scientist J. Tandberg said that he had fused hydrogen into helium in an electrolytic cell with palladium electrodes. On the basis of his work he applied for a Swedish patent for "a method to produce helium and useful reaction energy". After deuterium was discovered in 1932, Tandberg continued his experiments with heavy water. Due to Paneth and Peters' retraction, Tandberg's patent application was eventually denied.

The term "cold fusion" was coined by Dr Paul Palmer of Brigham Young University in 1986 in an investigation of "geo-fusion", or the possible existence of fusion in a planetary core.

Pons and Fleischmann's experiment

On March 23, 1989, the chemists Stanley Pons and Martin Fleischmann at the University of Utah held a press conference and reported the production of excess heat that could only be explained by a nuclear process. The report was particularly astounding given the simplicity of the equipment, just a pair of electrodes connected to a battery and immersed in a jar of heavy water (dideuterium oxide). The press reported on the experiments widely, and it was one of the front-page items on most newspapers around the world. The immense beneficial implications of the Utah experiments, if they were correct, and the ready availability of the required equipment, led scientists around the world to attempt to repeat the experiments within hours of the announcement.

The press conference followed about a year of work of increasing tempo by Pons and Fleischmann, who had been working on their basic experiments since 1984. In 1988 they applied to the US Department of Energy for funding for a larger series of experiments: up to this point they had been running their experiments "out of pocket".

The grant proposal was turned over to several people for peer review, including Steven Jones of Brigham Young University. Jones had worked on muon-catalyzed fusion for some time, and had written an article on the topic entitled Cold Nuclear Fusion that had been published in Scientific American in July 1987. He had since turned his attention to the problem of fusion in high-pressure environments, believing it could explain the fact that the interior temperature of the Earth was hotter than could be explained without nuclear reactions, and by unusually high concentrations of helium-3 around volcanoes that implied some sort of nuclear reaction within. At first he worked with diamond anvils, but had since moved to electrolytic cells similar to those being worked on by Pons and Fleischmann, which he referred to as piezonuclear fusion. In order to characterize the reactions, Jones had spent considerable time designing and building a neutron counter, one able to accurately measure the tiny numbers of neutrons being produced in his experiments.

Both teams were in Utah, and met on several occasions to discuss sharing work and techniques. During this time Pons and Fleischmann described their experiments as generating considerable "excess energy", excess in that it could not be explained by chemical reactions alone. If this were true, their device would have considerable commercial value, and should be protected by patents. Jones was measuring neutron flux instead, and seems to have considered it primarily of scientific interest, not commercial. In order to avoid problems in the future, the teams apparently agreed to simultaneously publish their results, although their accounts of their March 6th meeting differ.

In mid-March both teams were ready to publish, and Fleischmann and Jones were to meet at the airport on the 24th to both hand in their papers at the exact same time. However Pons and Fleischmann then "jumped the gun", and held their press conference the day before. Jones, apparently furious at being "scooped", faxed in his paper to Nature as soon as he saw the press announcements. Thus the teams both rushed to publish, which has perhaps muddied the field more than any scientific aspects.

Within days scientists around the world had started work on duplications of the experiments. On April 10th a team at Texas A&M University published results of excess heat, and later that day a team at the Georgia Institute of Technology announced neutron production. Both results were widely reported on in the press. Not so well reported was the fact that both teams soon withdrew their results for lack of evidence. For the next six weeks competing claims, counterclaims, and suggested explanations kept the topic on the front pages, and led to what writers have referred to as "fusion confusion."

On April 12 Pons received a standing ovation from at the semi-annual meeting of the American Chemical Society. However, several weeks later at the meeting of the American Physical Society on May 1 there was a session on cold fusion at which a series of failed experiments were reported. The mainstream press reported these negative findings.

Both critics and those attempting replications were frustrated by what they said was incomplete information released by the University of Utah. With the initial reports suggesting successful duplication of their experiments there was not much public criticism, but a growing body of failed experiments started a "buzz" of their own. Pons and Fleischmann later apparently claimed that there was a "secret" to the experiment, a statement that infuriated the majority of scientists to the point of dismissing the experiment out of hand.

By the end of May much of the media attention had faded. William Happer said:"The furor died down and the enthusiasm for supporting the research ebbed as weeks and months went by and many laboratories reported that they could not reproduce the results of Pons and Fleischman and other embarrassed laboratories withdrew hasty but mistaken confirmations of their results." However, while the research effort also cooled to some degree, projects continued around the world.

Experimental set-up and observations

The electrolysis cell

In their original set-up, Fleischmann and Pons used a Dewar flask (a double-walled vacuum flask) for the electrolysis, so that heat conduction would be minimal on the side and the bottom of the cell (only 5 % of the heat loss in this experiment). The cell flask was then submerged in a bath maintained at constant temperature to eliminate the effect of external heat sources. They used an open cell, thus allowing the gaseous deuterium and oxygen resulting from the electrolysis reaction to leave the cell (with some heat too). It was necessary to replenish the cell with heavy water at regular intervals. The cell did not contain a stirring apparatus, though the authors claimed that the bubbling action of the gas kept the electrolyte well mixed and of a uniform temperature. The efficacy of this stirring method and thus the validity of the temperature measurements would later be disputed. Special attention was paid to the purity of the palladium cathode and electrolyte to prevent the build-up of material on its surface, especially after long periods of operation.

The cell was also instrumented with a thermistor to measure the temperature of the electrolyte, and an electrical heater to generate pulses of heat and calibrate the heat loss due to the gas outlet. After calibration, it was possible to compute the heat generated by the reaction.

A constant current was applied to the cell continuously for many weeks, and heavy water was added as necessary. For most of the time, the power input to the cell was equal to the power that went out of the cell within measuring accuracy, and the cell temperature was stable at around 30 °C. But then, at some point (and in some of the experiments), the temperature rose suddenly to about 50 °C without changes in the input power, for durations of 2 days or more. The generated power was calculated to be about 20 times the input power during the power bursts. Eventually the power bursts in any one cell would no longer occur and the cell was turned off.

Continuing efforts

Japan has instituted the largest research program to date on the topic. After spending $20 million from 1992 to 1997 on a focused research effort, their program ended with the announcement that "We couldn't achieve what was first claimed in terms of cold fusion."

In 1994, Dr. David Goodstein described the field as follows:

"Cold Fusion is a pariah field, cast out by the scientific establishment. Between Cold Fusion and respectable science there is virtually no communication at all. Cold fusion papers are almost never published in refereed scientific journals, with the result that those works don't receive the normal critical scrutiny that science requires. On the other hand, because the Cold-Fusioners see themselves as a community under siege, there is little internal criticism. Experiments and theories tend to be accepted at face value, for fear of providing even more fuel for external critics, if anyone outside the group was bothering to listen. In these circumstances, crackpots flourish, making matters worse for those who believe that there is serious science going on here."

Cold fusion researchers said that cold fusion is suppressed, and that skeptics suffer from pathological disbelief. They said that there was virtually no possibility for funding in cold fusion in the United States, and no chance of getting published. They said that people in universities refused to work on it because they would be ridiculed by their colleagues.

There are still a number of people researching the possibilities of generating power with cold fusion. Researchers share their results at the International Conference on Cold Fusion, recently renamed International Conference on Condensed Matter Nuclear Science. The conference is held every 12 to 18 months in various countries around the world, and is hosted by The International Society for Condensed Matter Nuclear Science, a scientific organization that was founded as a professional society to support research efforts and to communicate experimental results. A few periodicals emerged in the 1990s that covered developments in cold fusion and related new energy sciences. Researchers have contributed hundreds of papers to an international on-line cold fusion library.

The generation of excess heat and anomalous nuclear products has been reported by

among others. In the best experimental set-up, excess heat was observed in 50% of the experiment reproductions. Various fusion ashes and transmutations were observed by some scientists.

Since January 2000, the following peer-reviewed scientific journals have published articles on cold fusion:

Other kinds of cold fusion

A variety of other methods are known to bring about "cold" nuclear fusion. Some are "cold" in the strict sense as no part of the material is hot (except for the reaction products), some are "cold" in the limited sense that the bulk of the material is at a relatively low temperature and pressure but the reactants are not.

  • Fusion with low-energy reactants:
    • Muon-catalyzed fusion occurs at ordinary temperatures. It was studied in detail by Steven Jones in the early 1980s. It has not been reported to produce net energy. Because of the energy required to create muons, their 2.2 µs half-life, and the chance that muons will bind to new helium nuclei and thus stop catalyzing fusion, net energy production from this reaction is not believed to be possible.
  • Fusion with high-energy reactants in relatively cold condensed matter: (Energy losses from the small hot spots to the surrounding cold matter will generally preclude any possibility of net energy production.)
    • Pyroelectric fusion was reported in April 2005 by a team at UCLA. The scientists used a pyroelectric crystal heated from −30 to 45 °C, combined with a tungsten needle to produce an electric field of about 25 gigavolts per meter to ionize and accelerate deuterium nuclei into an erbium deuteride target. Though the energy of the deuterium ions generated by the crystal has not been directly measured, the authors used 100 keV (a temperature of about 10 K) as an estimate in their modeling. At these energies, two deuterium nuclei can fuse together to form three different products: a helium-3 nucleus and a 2.45 MeV neutron (Q value=3.3 MeV), a helium-3 nucleus and a 3 MeV proton (Q value=4.0MeV), or the less likely products: helium-4+a gamma ray (Q value=23.8 MeV), . This experiment has been repeated successfully, and other scientists have confirmed the results. Although it makes a useful neutron generator, the apparatus is not intended for power generation since it requires much more energy than it produces.
    • In sonoluminescence, acoustic shock waves create temporary bubbles that collapse shortly after creation, producing very high temperatures and pressures. In 2002, Rusi P. Taleyarkhan reported the possibility that bubble fusion occurs in those collapsing bubbles. As of 2005, experiments to determine whether fusion is occurring give conflicting results. If fusion is occurring, it is because the local temperature and pressure are sufficiently high to produce hot fusion.

Cultural references

The film The Saint had a plot surrounding cold fusion.

References

  1. 1989 Energy Research Advisory Board, "Cold fusion research"
  2. Storms, Edmund (2007). The Science of Low Energy Nuclear Reaction. Singapore: World Scientific Publishing. pp. pp 52-61. ISBN 9789812706201. {{cite book}}: |pages= has extra text (help)
  3. For example those cited by LENR researchers in 2004 DoE review:
    Y. Arata and Y-C Zhang, "Anomalous difference between reaction energies generated within D20-cell and H20 Cell", Jpn. J. Appl. Phys 37, L1274 (1998)
    Iwamura, Y., M. Sakano, and T. Itoh, "Elemental Analysis of Pd Complexes: Effects of D2 Gas Permeation". Jpn. J. Appl. Phys. A, 2002. 41: p. 4642.
    Other:
    Mizuno, T., et al., "Production of Heat During Plasma Electrolysis in Liquid," Japanese Journal of Applied Physics, Vol. 39 p. 6055, (2000)
  4. For example those cited by LENR researchers in 2004 DoE review:
    M.H. Miles et al., "Correlation of excess power and helium production during D2O and H20 electrolysis using Palladium cathodes", J. Electroanal. Chem. 346 (1993) 99
    B.F. Bush et al, "Helium production during the electrolysis of D20 in cold fusion", J. Electroanal. Chem. 346 (1993) 99
  5. See also:
    Szpak, S.; et al. (March 2007). "Further Evidence Of Nuclear Reactions In The Pd/D Lattice: Emission Of Charged Particles" (PDF). Naturwissenschaften. Springer Berlin / Heidelberg. doi:10.1007/s00114-007-0221-7. {{cite journal}}: Explicit use of et al. in: |author= (help)
    Huke, A., et al., "Evidence for a Host-Material Dependence of the N/P Branching Ratio of Low-Energy D+D Reactions Within Metallic Environments", European Physical Journal A, Vol. 27(S1), p. 187, (2006)
    Widom, A., Larsen, L., "Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces" European Physical Journal C - Particles and Fields, Vol. 46(1), p.107 (2006)
    Szpak, S., et al., "Thermal behavior of polarized Pd/D electrodes prepared by co-deposition". Thermochim. Acta, 2004. 410: p. 101.
    Li, X.Z., et al., "A Chinese View on Summary of Condensed Matter Nuclear Science" Journal of Fusion Energy, Vol. 23(3), p. 217-221, (2004)
    Li, X.Z., et al., "Correlation Between Abnormal Deuterium Flux and Heat Flow in a D/Pd System" Journal of Physics D: Applied Physics, Vol. 36, p. 3095, (2003)
    Miles, M., "Calorimetric studies of Pd/D2O+LiOD electrolysis cells". J. Electroanal. Chem., 2000. 482: p. 56.
    Mosier-Boss et al, "Use of CR-39 in Pd/D co-deposition experiments", Eur. Phys. J. Appl. Phys. 40, 293-303 (2007)
  6. See the review document submitted to the 2004 DoE panel on cold fusion by the researchers
  7. See the Report of the Review of Low Energy Nuclear Reactions by the 2004 DoE panel on cold fusion
  8. Szpak S. et al., "Polarized D/Pd-D2O system: Hot spots and mini-explosions", ICCF 10, 2003
  9. Szpak S. "Evidence of nuclear reactions in the Pd Lattice"", Naturwissenschaften, 2005
  10. Presented by Mosier-Boss, Szpak and Gordon at the APS meeting in March 2007 ( slide 7) Cited by Krivit, New Energy Times, March 16, 2007
  11. See the Report of the Review of Low Energy Nuclear Reactions by the 2004 DoE panel on cold fusion
  12. Hagelstein P. et al., "New physical effects in metal deuterides", submitted to the 2004 DoE panel on cold fusion
  13. Mosier-Boss et al, "Use of CR-39 in Pd/D co-deposition experiments", Eur. Phys. J. Appl. Phys. 40, 293-303 (2007)
  14. Energy Research Advisory Board of the United States Department of Energy, "Report on Cold fusion research", November 1989
  15. Schwinger, J., "Cold fusion: Does it have a future?", Evol. Trends Phys. Sci., Proc. Yoshio Nishina Centen. Symp., Tokyo 1990, 1991. 57: p. 171.
  16. Close, F., "Too Hot to Handle. The Race for Cold Fusion." 1992, New York: Penguin, paperback.
  17. Huizenga, J.R., "Cold Fusion: The Scientific Fiasco of the Century". second ed. 1993, New York: Oxford University Press.
  18. "Cold fusion research : A Report of the Energy Research Advisory Board to the United States Department of Energy". 1989. Retrieved 2007-11-21. the failure of a theory to account for cold fusion can be discounted on the grounds that the correct explanation and theory has not been provided
  19. Polanyi J. "Elation Should Be Tempered Until Jury Has Examined Experiments", The Financial Post, May 1, 1989 ]
  20. APS Special Session on Cold Fusion, May 1-2, 1989
  21. ^ Browne M. "Physicists Debunk Claim Of a New Kind of Fusion", New York Times, May 3, 1989]
  22. Pollack, A. "Japan, Long a Holdout, Is Ending Its Quest for Cold Fusion", New York Times, August 26, 1997 pg. C.4
  23. Goodstein, D. "Whatever happened to cold fusion?", 'The American Scholar' 63(4), Fall 1994, 527-541
  24. Josephson, B. D., "Pathological disbelief", 2004
  25. "DOE Warms to Cold Fusion", Physics Today, April 2004, pp 27
  26. "In from the cold", The Guardian, March 24, 2005
  27. McKubre is one of the researchers presenting their review of the Cold fusion field to the 2004 DOE panel. See also McKubre, M.C.H., et al., "Isothermal Flow Calorimetric Investigations of the D/Pd and H/Pd Systems" Journal of Electroanalytical Chemistry, Vol. 368, p. 55, (1994)
  28. E. K. Storms, "Measurements of excess heat from a Pons-Fleischmann Type electrolytic cell using palladium sheet", Fusion Technol. 23 (1993) 230.
  29. For example:
    Iwamura, Y., M. Sakano, and T. Itoh, "Elemental Analysis of Pd Complexes: Effects of D2 Gas Permeation". Jpn. J. Appl. Phys. A, 2002. 41: p. 4642.
    Szpak, S.; et al. (March 2007). "Further Evidence Of Nuclear Reactions In The Pd/D Lattice: Emission Of Charged Particles". Naturwissenschaften. Springer Berlin / Heidelberg. doi:10.1007/s00114-007-0221-7. {{cite journal}}: Explicit use of et al. in: |author= (help)
    Huke, A., et al., "Evidence for a Host-Material Dependence of the N/P Branching Ratio of Low-Energy D+D Reactions Within Metallic Environments", European Physical Journal A, Vol. 27(S1), p. 187, (2006)
    Widom, A., Larsen, L., "Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces" European Physical Journal C - Particles and Fields, Vol. 46(1), p.107 (2006)
    Szpak, S., et al., "Thermal behavior of polarized Pd/D electrodes prepared by co-deposition". Thermochim. Acta, 2004. 410: p. 101.
    Li, X.Z., et al., "A Chinese View on Summary of Condensed Matter Nuclear Science" Journal of Fusion Energy, Vol. 23(3), p. 217-221, (2004) <br Li, X.Z., et al., "Correlation Between Abnormal Deuterium Flux and Heat Flow in a D/Pd System" Journal of Physics D: Applied Physics, Vol. 36, p. 3095, (2003)
    Miles, M., "Calorimetric studies of Pd/D2O+LiOD electrolysis cells". J. Electroanal. Chem., 2000. 482: p. 56.
  30. Nature Journal Volume 434
  31. B. Naranjo, J.K. Gimzewski, S. Putterman., "Observation of nuclear fusion driven by a pyroelectric crystal"., University of California, Los Angeles, 2005.
  32. Phil Schewe and Ben Stein., "Pyrofusion: A Room-Temperature, Palm-Sized Nuclear Fusion Device"., Physics News Update 729., April 27, 2005
  33. Michelle Thaller., "Coming in out of the cold: Cold fusion, for real" Christian Science Monitor., June 6, 2005
  34. "Nuclear fusion on the desktop ... really!" MSNBC., 27 April, 2005

See also

Further information

Books

  • Storms, Edmund. Science of Low Energy Nuclear Reaction: A Comprehensive Compilation of Evidence and Explanations. World Scientific Publishing Company, 2007 ISBN 9-8127062-0-8.
  • Kozima, Hideo. The Science of the Cold Fusion phenomenon, Elsevier Science, 2006. ISBN 0-08-045110-1.
  • Park, Robert L. Voodoo Science: The Road from Foolishness to Fraud. New York: Oxford University Press, 2000. ISBN 0-19-513515-6.
  • Taubes, Gary. Bad Science: The Short Life and Weird Times of Cold Fusion. New York, N.Y. : Random House, 1993. ISBN 0-394-58456-2.
  • Huizenga, John R. Cold Fusion: The Scientific Fiasco of the Century. Rochester, N.Y.: University of Rochester Press, 1992. ISBN 1-878822-07-1; ISBN 0-19-855817-1.
  • Close, Frank E..Too Hot to Handle: The Race for Cold Fusion. Princeton, N.J. : Princeton University Press, 1991. ISBN 0-691-08591-9; ISBN 0-14-015926-6.
  • Mallove, Eugene. Fire from Ice: Searching for the Truth Behind the Cold Fusion Furor. John Wiley & Sons, Inc., 1991. ISBN 0-471-53139-1.

External links

Video

  1. New Energy Times is linked to from this wired article, giving it both reliability and notability:
Category: