This is an old revision of this page, as edited by Rausch (talk | contribs) at 10:34, 17 August 2009 (→Further reading). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 10:34, 17 August 2009 by Rausch (talk | contribs) (→Further reading)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of 'expansion' and 'contraction'.
Anosov diffeomorphisms were introduced by D. V. Anosov, who proved that their behaviour was in an appropriate sense generic (when they exist at all).
Overview
Three closely related definitions must be distinguished:
- If a differentiable map f on M has a hyperbolic structure on the tangent bundle, then it is called an Anosov map. Examples include the Bernoulli map, and Arnold's cat map.
- If the map is a diffeomorphism, then it is called an Anosov diffeomorphism.
- If a flow on a manifold splits the tangent bundle into three invariant subbundles, with one subbundle that is exponentially contracting, and one that is exponentially expanding, and a third, non-expanding, non-contracting one-dimensional sub-bundle, then the flow is called an Anosov flow.
Anosov proved that Anosov diffeomorphisms are structurally stable and form an open subset of mappings (flows) with the C topology.
Not every manifold admits an Anosov diffeomorphism; for example, there are no such diffeomorphisms on the sphere . The simplest examples of compact manifolds admitting them are the tori: they admit the so-called linear Anosov diffeomorphisms, which are isomorphisms having no eigenvalue of modulus 1. It was proved that any other Anosov diffeomorphism on a torus is topologically conjugate to one of this kind.
The problem of classifying manifolds that admit Anosov diffeomorphisms turned out to be very difficult, and still as of 2005 has no answer. The only known examples are infranil manifolds, and it is conjectured that they are the only ones.
Another famous problem is to determine whether or not the nonwandering set of an Anosov diffeomorphism must be the whole manifold. This is known to be true for linear Anosov diffeomorphisms (and hence for any Anosov diffeomorphism in a torus). As of December 2007, it is believed to be proved for all Anosov diffeomorphisms (Xia 2007).
Anosov flow on (tangent bundles of) Riemann surfaces
As an example, this section develops the case of the Anosov flow on the tangent bundle of a Riemann surface of negative curvature. This flow can be understood in terms of the flow on the tangent bundle of the Poincare half-plane model of hyperbolic geometry. Riemann surfaces of negative curvature may be defined as Fuchsian models, that is, as the quotients of the upper half-plane and a Fuchsian group. For the following, let H be the upper half-plane; let Γ be a Fuchsian group; let M=H\Γ be a Riemann surface of negative curvature, and let TM be the tangent bundle of unit-length vectors on the manifold M, and let TH be the tangent bundle of unit-length vectors on H. Note that a bundle of unit-length vectors on a surface is a complex line bundle.
Lie vector fields
One starts by noting that TH is isomorphic to the Lie group PSL(2,R). This group is the group of orientation-preserving isometries of the upper half-plane. The Lie algebra of PSL(2,R) is sl(2,R), and is represented by the matrices
which have the algebra
The exponential maps
define right-invariant flows on the manifold of TH=PSL(2,R), and likewise on TM. Defining P=TH and Q=TM, these flows define vector fields on P and Q, whose vectors lie in TP and TQ. These are just the standard, ordinary Lie vector fields on the manifold of a Lie group, and the presentation above is a standard exposition of a Lie vector field.
Anosov flow
The connection to the Anosov flow comes from the realization that is the geodesic flow on P and Q. Lie vector fields being (by definition) left invariant under the action of a group element, one has that these fields are left invariant under the specific elements of the geodesic flow. In other words, the spaces TP and TQ are split into three one-dimensional spaces, or subbundles, each of which are invariant under the geodesic flow. The final step is to notice that vector fields in one subbundle expand (and expand exponentially), those in another are unchanged, and those in a third shrink (and do so exponentially).
More precisely, the tangent bundle TQ may be written as the direct sum
or, at a point , the direct sum
corresponding to the Lie algebra generators Y, J and X, respectively, carried, by the left action of group element g, from the origin e to the point q. That is, one has , and . These spaces are each subbundles, and are preserved (are invariant) under the action of the geodesic flow; that is, under the action of group elements .
To compare the lengths of vectors in at different points q, one needs a metric. Any inner product at extends to a left-invariant Riemannian metric on P, and thus to a Riemannian metric on Q. The length of a vector expands exponentially as exp(t) under the action of . The length of a vector shrinks exponentially as exp(-t) under the action of . Vectors in are unchanged. This may be seen by examining how the group elements commute. The geodesic flow is invariant,
but the other two shrink and expand:
and
where we recall that a tangent vector in is given by the derivative, with respect to t, of the curve , the setting t=0.
Geometric interpretation of the Anosov flow
When acting on the point z=i of the upper half-plane, corresponds to a geodesic on the upper half plane, passing through the point z=i. The action is the standard Möbius transform action of SL(2,R) on the upper half-plane, so that
A general geodesic is given by
with a, b, c and d real, with ad-bc=1. The curves and are called horocycles. Horocycles correspond to the motion of the normal vectors of a horosphere on the upper half-plane.
See also
Further reading
- "Y-system,U-system, C-system", Encyclopedia of Mathematics, EMS Press, 2001
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, (1967) Proc. Steklov Inst. Mathematics. 90.
- Anthony Manning, Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature, (1991), appearing as Chapter 3 in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Tim Bedford, Michael Keane and Caroline Series, Eds. Oxford University Press, Oxford (1991). ISBN 0-19-853390-X (Provides an expository introduction to the Anosov flow on SL(2,R).)
- Xia, Zhihong (2007), Homology of invariant foliations and its applications in dynamics abstract from International Conference on Topology and its Applications 2007 at Kyoto
Anosov diffeomorphism at PlanetMath.
Categories: