This is an old revision of this page, as edited by Brews ohare (talk | contribs) at 22:51, 31 August 2009 (→Real physical versus conversion factor). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 22:51, 31 August 2009 by Brews ohare (talk | contribs) (→Real physical versus conversion factor)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)This is the talk page for discussing improvements to the Speed of light article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18Auto-archiving period: 7 days |
Speed of light is a former featured article. Please see the links under Article milestones below for its original nomination page (for older articles, check the nomination archive) and why it was removed. | |||||||||||||
This article appeared on Misplaced Pages's Main Page as Today's featured article on October 29, 2004. | |||||||||||||
| |||||||||||||
Current status: Former featured article |
Physics: Relativity B‑class Top‑importance | |||||||||||||
|
Archives |
This page has archives. Sections older than 7 days may be automatically archived by Lowercase sigmabot III. |
This is the talk page for discussing improvements to the Speed of light article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18Auto-archiving period: 7 days |
The numerical value 299 792 458 m/s is not measured in SI units
In SI units the number 299 792 458 m/s is used to relate time-of-transit to length in the formula length = 299 792 458 m/s × time.Jespersen and in Sydenham. Given this relation, the number 299 792 458 m/s is established by definition, and is not subject to confirmation by experimental observation. (See same references.) In short, the number 299 792 458 m/s in the SI system of units is not measurable.
In contrast, if a length is expressed in wavelengths of some particular atomic transition (for example, as per the definition of the metre prior to 1983), the time it takes light to traverse this length can be measured (as is done for the metre), and the speed of light then is measurable in terms of wavelengths/s. Needless to say, if the wavelength is expressed in metres, this number for the speed of light will be close to 299 792 458 m/s, but unlike 299 792 458 m/s, this measured speed of light will have an error bar associated with the errors of observation.
This measured value of the real speed of light is not used in the modern SI definition of length because (at the moment, anyway) the error bar introduced by use of the measured value of c is larger than that incurred using 299 792 458 m/s with the time-of-flight methodology. Brews ohare (talk) 23:17, 21 August 2009 (UTC)
- Yes, so you've told us, and we get it. How does this relate to the article? I don't see anything about "measured" that needs to be fixed. Dicklyon (talk) 23:34, 21 August 2009 (UTC)
The number 299 792 458 m/s is not the measured speed of light in SI units, and it is not the "exact" speed of light in SI units; it's just the number in the formula length = 299 792 458 m/s × time of flight. The measured speed of light has an error bar, and is not known exactly, but is approximately 299 792 458 m/s. The statement in the lead In SI units, c is exactly 299,792,458 metres per second. is not correct, or perhaps I should say it is not correct if c is interpreted as the actual speed of light, and not just as the proportionality factor in the equation for length. Brews ohare (talk) 00:06, 22 August 2009 (UTC)
- Brews, the scaling constant and the speed of light are the exact same things. I suggest you drop the stick before someone files an ANI request and get topic-banned like David Tombe just got. Headbomb {κοντριβς – WP Physics} 08:07, 22 August 2009 (UTC)
- Or you can continue the discussion somewhere else. Martin Hogbin (talk) 08:56, 22 August 2009 (UTC)
What was the measured speed of light in 1982 in m/s, before the meter was redefined to be based upon the speed of light? —Finell (Talk) 12:47, 22 August 2009 (UTC)
- 299 792 458 m/s. Martin Hogbin (talk) 14:43, 22 August 2009 (UTC)
- Thanks, that's what I thought. Martin, I am sure that you can explain the fallacy of the DT-BO position in terms that they are able to understand, including demonstration (not bare assertion) of how they either misinterpret their sources or that they are not WP:RSs. Whether they will agree with it is a separate matter. While I would welcome their understanding and agreement, that is not my primary concern; my primary concern is the process. The explanation belongs on this Talk page and is the the appropriate way to close this discussion topic. As tendentious as they have been, they have been trying in good faith to improve the article and their thesis is relevant to the article's topic. Therefore, the error in the thesis should be explained, here. FYI, Jimbo looked at this talk page and agrees that neither side has addressed the other's points or supported their own position by showing what the RSs actually say on the subject (he doesn't claim to understand the topic, but he got the gist of the dispute). The explanation will serve in the future to show how the issue was resolved, if it arises again. Thank you. —Finell (Talk) 22:10, 22 August 2009 (UTC)
- Reply to Finell.
I will make an attempt here to state my case in response to Finell with supporting references as a summary of how I see the matter. I invite the other editors on this page to support their views in a similar manner. The following is not intended to be argumentative, but a straightforward response to Finell.
- Background
There are several different points to make. The first is that there does exist in the universe something called the speed of light that, according to relativity, relates to the structure of spacetime and the bounds on the transport of information and of matter. Second, the numerical value of this speed can be measured. One way to do this is to take a set length, for example the wavelength of an atomic transition, and determine the time it takes for light to transit this distance. The speed of light is then c = λ/t. That approach was the methodology used in the SI units prior to 1983. See this NIST timeline for details: definition:
“On October 14, 1960 the Eleventh General Conference on Weights and Measures redefined the International Standard of Length as 1,650,763.73 vacuum wavelengths of light resulting from unperturbed atomic energy level transition 2p10 5d5 of the krypton isotope having an atomic weight of 86. The wavelength is
- λ = 1 m / 1,650,763.73 = 0.605,780,211 µm
At different times some national laboratories used light sources other than krypton 86 as length standards. Mercury 198 and cadmium 114 were among these and they were accepted by the General Conference as secondary length standards.”
It seems to me doubtful that any of the parties disagree with this background. They probably also agree that this pre-1983 approach resulted in a value for c of approximately 299 792 458 m/s, and that this value was obtained only to within observational error (that is, this number is not an exact value).
- SI units post 1983
In view of the status of the speed of light as a physical constant, independent of frequency, direction etc., it is possible to set up a laboratory to realize the speed of light (subject to some caveats about corrections needed to adjust for "nonideal vacuum"). That being so, lengths can be compared by comparing the times of transit of light along the lengths using a formula length = c × time of transit. Actually, one does not have to know the numerical value of c in order to make such length comparisons: one has to be sure only that the speed of light in vacuum has been realized. Thus length comparisons are simply ratios of transit times, and the actual value of c simply divides out in such ratios. For this reason, as pointed out by Jespersen of the Bureau of Standards (underscores are mine):
One fallout of this new definition was that the speed of light was no longer a measured quantity. The reason is that, by definition, a meter is the distance light travels in a designated length of time, so however we label that distance - the speed of light is automatically determined. ... turning c into a conversion factor whose value is fixed and arbitrary.
As stated by Sydenham in a rather definitive article that is often cited (underscores mine):
The numerical value of the speed of light c = 299 792 458 m/s is the result of numerical standards chosen for the standards of time and of length. Thus the speed of light as a numerical value, is not a fundamental constant.
- Summary
We see then, that while the "speed of light" was initially a measurable quantity pre-1983, post-1983 is has become a "arbitrary" value that is not "a fundamental constant". This odd situation is understood by noticing that the speed of light still is a physical quantity, but the terminology "speed of light" has two different meanings: pre-1983 it was a measured value, and post-1983 it is a "conventional value" of 299 792 458 m/s.
This change in meaning is a peculiarity of the SI units. The speed of light is used in two senses: the actual physical experimental speed of light and the SI units conventional value for the speed of light. Because of the post-1983 definition of the meter, the actual physical speed of light can no longer be expressed in m/s; all that is possible is the conventional, defined value 299 792 458 m/s. To state the actual physical speed of light in SI units, that is the physically observable behavior of light, one must resort to expressing the speed of light in terms of some physical length, for example, wavelengths of some transition/second.
The debate on this WP page stems from confusion between the conventional defined value for the speed of light of 299 792 458 m/s, (which is an exact number chosen by definition to be a value chosen for convenience to be close to the measured value prior to 1983), and the actual physical speed of light, which cannot be expressed any longer in m/s because of the convention that the metre is defined so this number always is 299 792 458 m/s.
Within the new definition, the actual physical speed of light must be expressed not in m/s (because that results in tautology) but in terms of some physical length, for example in terms of wavelengths of some atomic transition/s, as was done prior to 1983. That is, c can be expressed as some number of λ's per second. The real, physical speed of light is not calculable from some basic theory, and so cannot be stated as a definite numerical value, but must result from measurement with an observational error bar attached to it.
I hope that this exposition lays out the situation clearly. It is not intended to be argumentative, but simply to point out the confusing usage of the term "speed of light" to refer both to a fact of physical nature (that is beyond human capacity to measure without an error bar) and also to an exact conventional "conversion factor" of 299 792 458 m/s Brews ohare (talk) 16:04, 23 August 2009 (UTC)
- ... and if everyone politely ignores this clearly laid out exposition of your confusion, will you then finally stop repeating it on this talk page? DVdm (talk) 16:47, 23 August 2009 (UTC)
- DVdm: You have made what is simply a nasty uncooperative response to a sincere effort on my part. Your failure to be constructive and your snarky attitude does nothing to advance matters. My view is that your ideas about these matters are misinformed, and if you disagree, you should support your views, not badmouth earnest effort. Brews ohare (talk) 19:23, 23 August 2009 (UTC)
- Perhaps I should have ignored it myself to begin with. My apologies. DVdm (talk) 21:23, 23 August 2009 (UTC)
- True apology is accompanied by changed behavior. False apology is just a form of sarcasm. Brews ohare (talk) 02:01, 24 August 2009 (UTC)
- This was not an apology to you but to the others, for not following my own hint to politely ignore your repetitive talk page disruptions. DVdm (talk) 10:00, 24 August 2009 (UTC)
Martin's lead
In this diff, Martin took us back to saying "the term", removed a ref, adding a dangling "this", and made some other subtle wording changes. Does anyone understand or support this change, or can I put back the previous one? Dicklyon (talk) 22:12, 22 August 2009 (UTC)
- Where is the dangling this and what was the previous version? Abtract (talk) 23:28, 22 August 2009 (UTC)
- Click the diff link to see both versions, including "This is..." with no subject noun. Dicklyon (talk) 23:31, 22 August 2009 (UTC)
- I have no preference either way. Abtract (talk) 23:38, 22 August 2009 (UTC)
- We could change 'This is' to 'It is', perhaps and maybe make it one sentence.
- Regarding 'the term', I believe that it is important to make clear that we are talking not about the normal English meaning of 'the speed of light' but a specific although widely used meaning of 'the speed of light in a perfect vacuum and an inertial frame (and maybe other conditions) that is the fundamental constant of the spacetime in which we live'.
- I do not think that it is good English to write 'The speed of light generally refers to the speed at which light travels in free space'. Maybe we could have, 'The speed of light is a term that generally refers to the speed at which light travels in free space'. Martin Hogbin (talk) 12:20, 23 August 2009 (UTC)
- In view of comments made elsewhere, I should also point out that this is not my lead it is the result of collaborative editing in the section above 'Proposed start to the lead'. Martin Hogbin (talk) 12:35, 23 August 2009 (UTC)
- I don't think we want "generally" or "refers" or "term" in there at all; just say what it is, as in most other articles. And if any of those collaborators have an opinion, they should let us know. Dicklyon (talk) 15:07, 23 August 2009 (UTC)
- I can live with the new version, but I prefer the original one, so afaiac, go ahead. - DVdm (talk) 12:51, 23 August 2009 (UTC)
- I put back the standard-form opening. If anyone besides Martin think that "the term" is a better approach, they should say so here. I left Ruslik0's addition of "partly to allow more precise measurements of distance" in the lead paragraph, even though I think it's a bad idea to go off on this tangent in the opening paragraph. Dicklyon (talk) 16:05, 23 August 2009 (UTC)
- I have no problem with the first sentence but I have restored the second one which says all we need to say. We do not need the date when the standard was changed in the lead, only the current standard. As Dick has said, we do not want just one of many reasons for the change. Also, as has been pointed out by Abtract, the speed of light is not strictly a defined quantity, it is fixed by virtue of the definition of the metre. Unsigned comment probably due to Martin Hogbin
- OK, sounds like we're converged. I re-wikified, and changed "exact" to "defined" to avoid giving the false impression that the speed of light has been exactly measured or something like that. Hopefully, any further expansion or clarification of this bit of complication can be kept out of the lead. Dicklyon (talk) 19:55, 23 August 2009 (UTC)
- Sorry, that last bit was left there by me by mistake. I have now deleted it. Have a look at the article. 86.142.238.242 (talk) 20:23, 23 August 2009 (UTC)
The statement "In SI units, the metre is defined such that the speed of light has the exact value of 299,792,458 metres per second." is technically accurate. However, this statement is not a simple one, involving as it does the notion that one actually is permitted to set an exact value for the speed of light, while normally one would think of it as a measured quantity. If one tries to explain this matter as a decision to redefine the metre so as to make it so, that again appears highly non-intuitive, and possibly circular. I do not find it satisfactory to leave the reader dangling, hoping they might find and read by some accident the subsection "Speed of light by definition". Brews ohare (talk) 20:34, 23 August 2009 (UTC)
- Actually, the statement itself is simple, and that's what's good about it, given its position in the lead. Any physical, metaphysical, semantic, and philosophical complexity associated with it can well be deferred to the section about how and why it is a defined quantity. You have spent much of the last year pushing to include such complexity in the lead, and the consensus is clearly against you on that. Dicklyon (talk) 20:38, 23 August 2009 (UTC)
Call it simple to suggest that one can define the speed of light when intuition suggests the speed of light should be measured? Brews ohare (talk) 20:46, 23 August 2009 (UTC)
I guess I spoke too soon about convergence. Abtract has thrown it out and started over again. Abtract, can you please explain what and why? Dicklyon (talk) 23:05, 23 August 2009 (UTC)
- Sorry about that but I started to make a couple of minor clarifications, then it came to me that the paragraphs were not in the ideal order and one thing led to another ... but it does read much better now imho. Abtract (talk) 00:27, 24 August 2009 (UTC)
- The opening paragraph of three choppy little sentences reads better to you? And you're OK ignoring the long-fought consensus to put the exact value in the opening paragraph? Dicklyon (talk) 03:17, 24 August 2009 (UTC)
Definition and measurement
The WP article states:
In the International System of Units the metre is defined such that the speed of light in vacuum has an exact value where c = 299,792,458 metres per second.
That is an accurate statement, although it omits explanation of how it is possible to have an exact value for a physically observable entity the speed of light despite the fact that no observable entity has an exact value when that value cannot be calculated from scratch, but must be measured. That conundrum is only partly fixed by statement that this feat is accomplished by definition of the metre as a length that satisfies c = 299,792,458 metres per second. The natural response is "Huh? Isn't c measurable, and subject to measurement error? Isn't this 'definition of the metre' argument pure sophistry?".
Of course, to actually measure c in using the SI system, as opposed to defining c one must introduce a length other than the metre. One way to do that is to follow the older definition of length and use the wavelength of some specified atomic transition to do that, call it λatomic. Then one measures the time of transit of light through distance λatomic and expresses the speed c as c = λatomic / time-of-transit. That gives the actual speed of light in units of λatomic/s.
Is this number in principle 299,792,458 m/s? The answer is: "No, but it is pretty close". If we could measure λatomic in metres exactly and time-of-transit exactly, then we could convert this measured c to m/s, and it would not be exactly 299,792,458 m/s, but nearly so, because 299,792,458 m/s is the measured value (within experimental error) found before the 1983 definition of the metre. See NIST time line.
An interesting point is that if the present definition of the metre were altered so that the defined value for c were 300, 000, 000 m/s instead of 299,792,458 m/s, say, and with this new definition for the meter the wavelength λatomic were remeasured in terms of the new metre, the measured speed of light would still be exactly the same number of λatomic /s as before with the old metre, because λatomic would have the same transit time as before, so c in units of λatomic/(time-of-transit) would still be the same. However, in terms of the new metre, now c = 300, 000, 000 m/s. That is what Wheeler means by answering the question "A fundamental constant of nature?" by "Hardly! Rather, the work of two centuries of committees."; and what Jespersen; and Sydenham mean by statements like: the numerical value of c in SI units is a "conversion factor whose value is fixed and arbitrary." Brews ohare (talk) 00:53, 24 August 2009 (UTC)
- Yes - 299,792,458 is not a fundemental constant of nature. However, 299,792,458 m/s is. EdwardLockhart (talk) 07:33, 24 August 2009 (UTC)
- Your own words about the disputed statement in the lead are, 'That is an accurate statement'. Bearing in mind the length of discussion that there has been on this subject, do you really think that it is desirable or even possible to have an explanation of why the statement is correct in the lead? We have a statement that you agree is accurate. Let us leave it at that and work on an explanation elsewhere. Martin Hogbin (talk) 08:12, 24 August 2009 (UTC)
Hmm I'm beginning to see what the problem is here. Lockhart's statement above that "Yes - 299,792,458 is not a fundemental constant of nature. However, 299,792,458 m/s is." is surely incorrect. The SoL is a fundamental constant of nature (FCoN) ... yes; "c" is a FCoN ... yes; but this FCoN surely cannot be stated in SI unit because the standard unit of length has itself been defined such that the SoL has the exact value 299,792,458 m/s in SI units. This is the circularity problem I referred to previously and I think is what ohare keeps banging on about.Abtract (talk) 09:22, 24 August 2009 (UTC)
- There is no circularity problem any more than there is if we define the metre using a metal rod. We mark up a rod with two lines which we define to be a meter apart. So, how far apart are the lines? One metre! How long is a metre? The distance between the lines! This 'circularity' is a consequence of our defining arbitrary standards. Martin Hogbin (talk) 10:33, 24 August 2009 (UTC)
- Indeed but, if we then go on to ask how tall am I in metres or how fast does light travel in m/s, there would be no circularity because the metre had been defined independently of me or light. Abtract (talk) 12:06, 24 August 2009 (UTC)
- Asking how tall you are is the same in both cases. If we define a meter with a metal rod then we can measure the speed of light based on our standard metre, we cannot measure the metre, it is set by definition. If we define the meter based on the speed of light we can measure out (delineate) the meter but we cannot measure the speed of light, it is fixed by definition. We choose to define some things, others are results of our definitions. Martin Hogbin (talk) 12:46, 24 August 2009 (UTC)
Martin: In the new SI units, how tall you are is how long it takes for light to travel your height in seconds. Converting this to metres by multiplication with 299,792,458 m/s (or any other exact conversion factor) adds absolutely nothing to the experimental info in use. It is still a time of transit, not a measured length. You have not dealt with the three sources Wheeler, Jespersen and Sydenham. If, however, you measure your height in wavelengths, you have added some experimental info and the real, physical, entity speed of light is included in that new info. See the last paragraph of the above comments. Brews ohare (talk) 13:52, 24 August 2009 (UTC)
Do we have a consensus on the first paragraph?
Abtract and I have just made some minor changes to the first sentence.
Abtract removed the brackets, which I agree do not look good in the first sentence.
My changes were:
Change 'electromagnetic waves' to 'electromagnetic radiation'. I think that this is a more general term in that it covers the quantum model better.
Change 'ideal vacuum' to 'vacuum' with a link to 'free space'. This is another case where we cannot hope to explain a much discussed topic in one or two words, best to have a link to the page that discusses the topic fully. I do not think the term 'ideal vacuum' is that standard, it is not used in the vacuum article.
If there are objections to my changes can we please discuss then here and, if there is a consensus, just revert them rather than rewriting the whole paragraph from scratch again.
- Yes, we have my consensus :-)
- I changed "in an vacuum" to "in vacuum" though. Feel free to change into "in a vacuum" if you prefer that. DVdm (talk) 09:09, 24 August 2009 (UTC)
- I have made a few clarifying changes. In addition I think the statement of the actual number should be moved down until after the history para ... there would then be a natural progression. Abtract (talk) 09:20, 24 August 2009 (UTC)
- As Dick has pointed out there is a strong consensus not to move the numerical value from the first paragraph. Martin Hogbin (talk) 09:36, 24 August 2009 (UTC)
- Although my own preference was to start with the approximate value in the first paragraph, since all that many readers will want to know. The exact value, and the fact that it is exact, is an extra complication that I'd just as soon defer. But I think I lost that argument already. If someone wants to hold another referendum, we can revisit that; otherwise, let's don't. The best we can hope for at this point is to satisfy everyone except Brews and David, I think. Dicklyon (talk) 02:03, 25 August 2009 (UTC)
Unfortunately, there is not unanimity; clarity of exposition has not been reached. The natural response to the lead paragraph as now constituted is: "Huh? Isn't c measurable, and subject to measurement error? Isn't this 'definition of the metre' argument pure sophistry?" Brews ohare (talk) 13:58, 24 August 2009 (UTC)
- I agree that readers may find the fact that the speed of light has an exact value surprising. That's why we explicitly say that it is a consequence of the way the metre is defined, and why we supply links to metre and SI units for interested readers to follow. EdwardLockhart (talk) 14:07, 24 August 2009 (UTC)
- Brews, that may be your reaction but it is not everyone's. You have agreed that what is written is correct. Considering the pages of discussion we have had here, you must surely accept that it is simply not possible to provide any kind of explanation or justification for the change in the standard in the lead section. Martin Hogbin (talk) 14:08, 24 August 2009 (UTC)
Martin: The main source of this impossibility is a lack of understanding of the real role of 299,792,458 m/s as explained by the three sources Wheeler, Jespersen and Sydenham. If the editors would concede that this number is an arbitrary value set by committee and is not a physical constant of nature, the wording could be rearranged to explain that fact, and the sources provided. However, a number of editors are not yet aware of this fact, and continue to think 299,792,458 m/s is somehow an exact value for the real physical speed of light. This situation could be improved if all editors addressed the three sources instead of inventing new protests of personal construction. Brews ohare (talk) 14:17, 24 August 2009 (UTC)
- You see a contradiction where there is none. Yes, 299,792,458 is an arbitrary number set by committee which could equally have been something else. But nontheless, 299,792,458 m/s is an exact value for a fundamental constant of nature. EdwardLockhart (talk) 14:23, 24 August 2009 (UTC)
- It is a source of amazement to me that no-one (other than ohare?) seems to understand the circularity of that last statement. A degree is ⁄360 of a full rotation; a full rotation is 360 degrees ... duh. Abtract (talk) 14:36, 24 August 2009 (UTC)
- EdwardLockhart: As I understand what you are saying, it is within the power of a committee to set a fundamental constant of nature. In other words, if we are dissatisfied with the limitations on space travel set by the speed of light, we can simply declare it to be faster? If that is not what you mean, how do we determine what is the fundamental limitation upon space travel? I've suggested that it can be measured independent of man's machinations as c = λatomic/time-of-transit. This suggestion is not my invention: it is exactly what was done prior to 1983, and is the origin of the number 299,792,458 m/s (although post-1983 the error bars have been stripped). Again, I plead with you to address the three sources and to avoid shooting from the hip based upon your immediate understanding of the situation. Brews ohare (talk) 14:40, 24 August 2009 (UTC)
How about taking the parallel with temperature? The Celsius scale was originally defined with the freezing point of water at zero. Using this scale, it was not possible to measure the freezing point of water - it had been arbitrarily set by committee. It was, however, possible to measure the triple point of water, which was approximately 0.01 degrees. However, in 1954, the situation was reversed - the triple point became the defined value (at 0.01 degrees), and the freezing point was now able to be measured (it's about zero).
None of this is committees dictating to nature - we are merely making convenient choices about how to define our arbitrary units. Since we use physical phenomena as our yardsticks, some phsyical phenomena will end up with defined values rather than measured values. Which phenomena these are will depend on the choice of definitions for our units. EdwardLockhart (talk) 14:59, 24 August 2009 (UTC)
- EdwardLockhart: We could digress to discuss temperature scales and just what is the analogy between that and the speed of light. However, that strikes me as the long way around. It would be simpler and more direct to address the specific points raised, address the three sources, and state why you do or don't agree. Brews ohare (talk) 15:15, 24 August 2009 (UTC)
- I agreee with the sources, e.g. Sydenham's "the speed of light as a numerical value is not a fundamental constant", and Jespersen's "the speed of light was no longer a measured quantity; it became a defined quantity".
- You said to Martin:
- "If the editors would concede that this number is an arbitrary value set by committee and is not a physical constant" - I think we are all in agreement on this point.
- "a number of editors continue to think 299,792,458 m/s is somehow an exact value for the real physical speed of light" - yes, this is the consensus of the editors. It is also what the sources say. EdwardLockhart (talk) 15:34, 24 August 2009 (UTC)
EdwardLockhart Do you also agree with Wheeler answering the question: "A fundamental constant of nature?" by "Hardly! Rather, the work of two centuries of committees."; and Jespersen "c is a conversion factor whose value is fixed and arbitrary"?" Doesn't your acceptance of Sydenham ""the speed of light as a numerical value is not a fundamental constant" stand in contrast to your earlier remark that " But nonetheless, 299,792,458 m/s is an exact value for a fundamental constant of nature." ? Brews ohare (talk) 15:39, 24 August 2009 (UTC)
- I agree with Wheeler that there is nothing special about the number 299792458 except that a committee happens to have picked it to be, by definition, the speed of light in SI units.
- There is no contradiction between the two statements of mine you quote, or between them and the sources you mention. EdwardLockhart (talk) 15:46, 24 August 2009 (UTC)
Well, EdwardLockhart, I hesitate to parse the two sentences ""the speed of light as a numerical value is not a fundamental constant" (Sydenham) and "But nonetheless, 299,792,458 m/s is an exact value for a fundamental constant of nature." (EdwardLockhart), but in my mind they are absolutely contradictory. Perhaps you can bring out the nuance that separates their meanings? Brews ohare (talk) 15:52, 24 August 2009 (UTC)
- The first statement refers to the number 299792458. There's nothing remotely special about this number - it is a purely arbitrary choice. And although there were good reasons to pick this particular number, they too arose from previous arbitrary decisions.
- The second statement refers to the speed of light, which is a fundamental constant of nature. And in SI units, it has an exact value, by virtue of the way the definitions have been chosen. This value is 299,792,458 m/s.
- But all this has been explained before, so I am not hopeful that this will help any. EdwardLockhart (talk) 16:02, 24 August 2009 (UTC)
- EdwardLockhart: Here is the difficulty: the number 299,792,458 m/s was selected by committee. It is fixed. This number was measurable pre-1983 and was 299,792,458 m/s ± Error. It was not known exactly. Fixing this number by fiat in 1983 at 299,792,458 m/s does not make it an exact numerical value for "c"; it makes the conversion factor from transit time to metre an exact value. These are not the same things. That is what the sources say: see the words arbitrary value, not a fundamental constant? Brews ohare (talk) 21:04, 24 August 2009 (UTC)
There is a pretty strong consensus to leave the lead section as it is with respect to this subject. Perhaps we should discuss how the relevant section should read to make the exact situation as clear as possible. My first question is this. We start with:
In 1983 the 17th Conférence Générale des Poids et Mesures defined the metre to be the length of the path travelled by light in vacuum during a time interval of 1⁄299,792,458 of a second. The reasons for using this definition are stated in Resolution 1.
The first sentence is a simple statement of fact, whether or not we like it,but should we also state the reasons given in resolution1 in the text: verbatim, in our own words, not at all? Martin Hogbin (talk) 16:28, 24 August 2009 (UTC)
- There is no unanimity upon the first sentence beyond the belief that it will spark incredulity among some readers. That reaction could be avoided by simply pointing out that the approximate value for the speed of light of 299,792,458 m/s that resulted from measurement at an earlier time has been adopted today as a conversion factor for exact translation of times-of-transit to lengths in metres, thereby changing the definition of the metre. Brews ohare (talk) 21:26, 24 August 2009 (UTC)
- You must know that your "demand" for unanimity goes against WP:CONSENSUS, and so will be ignored: no single editor has an absolute right of veto over changes. You do not OWN this article, and you would do well not to obstruct its improvement. Physchim62 (talk) 04:17, 25 August 2009 (UTC)
- Physchim62: There is no demand for unanimity made here; just the rather mild observation that unanimity has not been achieved. I am not obstructing the improvement of this article, but inviting actual discussion of sources in place of belligerence and attempted intimidation. Brews ohare (talk) 05:05, 25 August 2009 (UTC)
- Instead of attitude, how about addressing the issue: There is no unanimity upon the first sentence beyond the belief that it will spark incredulity among some readers. Brews ohare (talk) 11:23, 25 August 2009 (UTC)
Last paragraph of lead
Here is my suggestion for the last paragraph of the lead, which I suggest is made the second:
The speed of light is an important constant connecting space and time in the unified structure of spacetime. It defines the conversion between mass and energy and is an upper bound on the speed at which matter and information can travel. It is the speed of travel of all electromagnetic radiation in free space, and is believed to be the speed of gravitational waves. In an inertial frame, light in vacuum always travels at c. However, when light passes through a transparent medium, such as glass or air, its speed is less. The ratio between the speed of light in vacuum and the speed of light in a medium is called the refractive index of the medium.
I also suggest that, 'regardless of any differences in the frequency, polarization, intensity, or propagation direction of light' is too detailed for the lead. Martin Hogbin (talk) 15:55, 24 August 2009 (UTC)
Maybe it should be moved to the 'Constant speed in inertial frames' section. We currently have more detail in the lead than the body. Martin Hogbin (talk) 15:58, 24 August 2009 (UTC)
- Now edited to reflect my comments above. If nobody objects I will insert this section as the second paragraph. Martin Hogbin (talk) 21:29, 24 August 2009 (UTC)
IMO, the intro reads better with this paragraph at the end, rather than as second paragraph. The presently preceding paragraphs are more qualitative and general and easier to read. This paragraph is more detailed and requires more of the reader. Brews ohare (talk) 23:01, 24 August 2009 (UTC)
- That is one 'no' so far. The reason I would like to change this paragraph is that it currently states many facts as if they were disconnected, 'The speed of light is a constant of spacetime', 'according to special relativity that', 'EM radiation travels at c', etc. These effects are all manifestations of the fact that the speed of light is a constant of our spacetime. Martin Hogbin (talk) 10:37, 25 August 2009 (UTC)
- I did not vote "no" on the paragraph restructuring, only on a change of placement. Brews ohare (talk) 10:52, 25 August 2009 (UTC)
- Sorry, I misunderstood you. Martin Hogbin (talk) 16:33, 25 August 2009 (UTC)
Terrell-Penrose rotation
Should we have a brief mention of this subject in 'Practical effect of the finite speed of light'? Martin Hogbin (talk) 16:00, 24 August 2009 (UTC)
- This subject is found on the WP page Terrell rotation and the effect refers to the apparent geometry of a moving object. I think a mention is useful. Brews ohare (talk) 23:04, 24 August 2009 (UTC)
- I don't think so - it's a relativistic effect, not a finite-light-speed one. EdwardLockhart (talk) 09:11, 25 August 2009 (UTC)
- Quite the reverse. It was years before it was noticed that if we were to look at a passing, rapidly moving, object we would not see it Lorentz contracted, as predicted by relativity, but rotated (simply speaking) due to the combined effect of the Lorentz contraction (the expected relativistic effect) and the time delay in light reaching our eyes from different parts of the object (a simple and easily calculated effect due only to the finite speed of light). It is similar, in principle, to aberration of starlight. Martin Hogbin (talk) 10:35, 25 August 2009 (UTC)
- So it is. Yes, I think it would make sense to include it. EdwardLockhart (talk) 21:40, 25 August 2009 (UTC)
- I have added a paragraph on the subject. Martin Hogbin (talk) 22:28, 25 August 2009 (UTC)
- There are some nice simulations of this effect. Should we add a link to one? Martin Hogbin (talk) 22:30, 25 August 2009 (UTC)
Thanks for the copyedit Dick. Just one thing, I really do not want to get into a discussion of whether it is Terrell, Terrell-Penrose or Penrose-Terrell rotation, the various names are mentioned in the linked article. Can we pick just one name, I do not care much which, and stick to it here. Martin Hogbin (talk) 08:47, 26 August 2009 (UTC)
Approximate value of c in first paragraph
Quote from above discussion:
Although my own preference was to start with the approximate value in the first paragraph, since all that many readers will want to know. The exact value, and the fact that it is exact, is an extra complication that I'd just as soon defer. But I think I lost that argument already. If someone wants to hold another referendum, we can revisit that; otherwise, let's don't. The best we can hope for at this point is to satisfy everyone except Brews and David, I think. Dicklyon (talk) 02:03, 25 August 2009 (UTC)
I believe this view, to start with an approximate value of c, to be the best compromise I have seen. It avoids sparking incredulity among readers induced by startling claims about defining the metre so that the speed of light cannot be measured in SI units, and allows this topic to be deferred to the section on "Speed of light by definition" where there is room to go into matters.
I see absolutely no necessity for introducing the number 299,792,458 m/s in the lead, and in fact many discussions of speed of light simply use an approximate value, because the main point is that it is fast. See Google search.
I believe the desire to introduce 299,792,458 m/s at bottom stems from a misplaced notion that this number has fundamental significance. The underlying reason for this belief is that it is referred to as an exact value, which confers a mystical awe among some editors. This despite the fact that 299,792,458 m/s is an arbitrary value, exact only because it is defined by committee as a conversion factor between length and time-of-transit. Half a dozen sources have been cited and quoted that say this, and explicitly indicate the lack of any mystique associated with this number. It could just as well be 300, 000, 000 m/s. Brews ohare (talk) 11:32, 25 August 2009 (UTC)
- Congratulations! You just confirmed Dicklyon's phrase "The best we can hope for at this point is to satisfy everyone except Brews and David, I think."
- Now please stop harrassing this talk page? Thank you. - DVdm (talk) 12:09, 25 August 2009 (UTC)
Your input is not relevant to the issues outlined above. You seemingly are unable to distinguish between harassment and discussion. Of course, to participate in discussion one must be able to articulate a point of view, not just rely upon hostility. Brews ohare (talk) 12:27, 25 August 2009 (UTC)
- There is nothing more to discuss here, Brews. We have two definitive sources BIPM and NIST stating: 'The meter is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second', and Note that the effect of this definition is to fix the speed of light in vacuum at exactly 299 792 458 m·s-1.
- This is clearly what must go in the article. If you want to discuss why this decision was made, the science behind it, why you do not agree with it, or your bizarre interpretation of the three sources which repeatedly quote then please do so on my talk page. Martin Hogbin (talk) 16:45, 25 August 2009 (UTC)
Martin; Of course BIPM and NIST say that, but they are talking about the SI system of units within which c refers only to the conversion factor between transit time and length. This is a classic case of a term being used in two senses: the speed of light as a fundamental constant of nature and the speed of light as a conversion factor in the SI units. Please consult Jespersen and Sydenham and Wheeler as I have suggested to you innumerable times without success. They point out that 299 792 458 m/s is an arbitrary value, a conversion factor set by committee decision that is not a fundamental constant of nature. Of course the actual speed of light is a fundamental constant of nature and has a specific value, not an arbitrary one. As Tombe, Brews-ohare and Abstract have said over and over again, you cannot measure this fundamental constant of nature within the SI system of units in units of m/s, because it is a defined value. You could, however, measure it in units of wavelengths per second. Brews ohare (talk) 19:26, 25 August 2009 (UTC)
- Brews the definitive sources are quite clear. I will only continue discussion on my talk page. Martin Hogbin (talk) 21:46, 25 August 2009 (UTC)
First, your definitive sources (NIST and BIPM) are only one source, as both sources simply quote the same 1983 committee determination. Second, this 1983 determination is specified by this source as placing 299 792 458 m/s out of the reach experimental determination as "never to be measured again". Third, the three sources Wheeler, and Sydenham, and Jespersen classify 299 792 458 m/s as arbitrary, a conversion factor and not a fundamental constant of nature. Thus, reference to 299 792 458 m/s is clearly not a reference to the fundamental constant of nature, and yet still is called in the SI units context the speed of light.
Is there any reason to impugn these three sources? I'd say they are at least as definitive as the committee source, and more general as they discuss the speed of light in a broader context than the SI units conversion factor. Brews ohare (talk) 00:34, 26 August 2009 (UTC)
- It has more information because your comparing things. "X units" doesn't tell you anything unless you compare it to something else. "My car moves at 10 m/s" tells me that your car is moving 10 299792458th of how fast light is moving. "This particle moves at 299792458 m/s" tells me that your particle moves as fast as light moves. Likewise "The chunk of metal in Paris has a mass of 1 kg" doesn't tell you anything. Headbomb {κοντριβς – WP Physics} 19:49, 26 August 2009 (UTC)
What the introduction says (or doesn't)
While I agree with Brews that it would be better to start with the approximate number, I don't agree with his reasoning or logic for why. The present lead says "In physics, the speed of light is a fundamental physical constant, the speed at which light and all electromagnetic radiation travels in vacuum. It is usually denoted by the letter "c". In the International System of Units, the metre is defined so that c has the exact value of 299,792,458 metres per second." which certainly does not suggest to anyone that 299,792,458 is a fundamental constant. And I agree that this number has to be in the article, and almost certainly in the lead; I just don't think that the somewhat distracting fact of the defined value should appear in the first paragraph. Many readers would be better served the way many books do this (not like Brew's sources, but some gentler sources), starting with the approximation that a reader can remember and use. Dicklyon (talk) 03:53, 26 August 2009 (UTC)
- Let me understand this carefully: WP says: the speed of light is a fundamental physical constant ... usually denoted by the letter "c". Moreover, in the SI units, "c" has the exact value of 299,792,458 metres per second.
- However, these WP statements (according to Dicklyon) in no way: suggest to anyone that 299,792,458 is a fundamental constant. Well tell me about the way this conclusion flows from the WP statements, please. Will the reader who is not a Philadelphia lawyer tease out this conclusion from the premises? The WP intro presents incorrect information. Brews ohare (talk) 05:38, 26 August 2009 (UTC)
- So you're saying a speed being a fundamental constant of nature implies that its numerical value in SI units is a fundamental constant? Yes, I can see why that would confuse you, since you think of it differently. Oh, well, we'll have to live that that duality. Dicklyon (talk) 05:44, 26 August 2009 (UTC)
Dick: Not only does your statement completely misstate my stance, which I will explain further below if you wish, but you have not dealt with your incorrect statement about the implications of the WP introduction. The WP intro presents incorrect information, despite your remarks. Brews ohare (talk) 13:32, 26 August 2009 (UTC)
To spell out the misinformation: WP says by implication: 299 792 458 m/s is a fundamental constant. The sources Wheeler; Jespersen; Sydenham say explicitly the contrary. Such errors certainly will impede attainment of featured article status for this page. Brews ohare (talk) 13:57, 26 August 2009 (UTC)
- h is a fundamental constant of nature. 6.62606896×10 isn't. Should we rewrite the Plank constant article because we state that h is a fundamental constant equal to (6.62606896±33)×10 J·s in SI units, out of fear that readers will think that 6.62606896×10 is a fundamental number? h and c are as fundamental as the other, both are scaling factors. Accept that you are the minority view here Brews, and move on. Headbomb {κοντριβς – WP Physics} 15:03, 26 August 2009 (UTC)
Headbomb: There is no majority or minority opinion involved here: WP states that 299 792 458 m/s is the exact value of a fundamental constant in contradiction to sources Wheeler; Jespersen; Sydenham. That is neither opinion nor conjecture. Brews ohare (talk) 15:23, 26 August 2009 (UTC)
- These sources say that the numerical value itself is arbitrary and not "fundamental", not that the physical concepts upon which they are based on cease to be "fundamental". You can define c or h to be whatever you want (other than 0 or infinity), all you're doing is scaling units ('cause you know, these are fundamental constants). Quantization doesn't stop because you've set h to be 10×10 instead of 10×10. The only fundamental constants which aren't scaling factors are dimensionless constants such as GF and α, and we have a name for those: dimensionless constants. Headbomb {κοντριβς – WP Physics} 17:25, 26 August 2009 (UTC)
- Of course there is opinion involved. Brews believes the sound bytes carelessly quote-mined from the sources support his fringe viewpoints/conclusions, and most others do not. The Wheeler quote, for example, comes from a book where the predominant unit system used has c=1. Such a system having c=1 uses c as an exact value, without error bars. The idea that Brews is the only one using logic or arguing from sources is a gross violation of good faith. Brews' opinion is a minority view, is against current consensus, and his continuing tendentious editing is the problem here. Tim Shuba (talk) 18:07, 26 August 2009 (UTC)
I've yet to see more than private opinion on your side. The only sources you quote are repeating the 1983 committee decision, which cannot settle the matter as it is confined to the SI units system.
Apparently it is hairsplitting for you guys. Of course the underlying physical entity "speed of light" that occurs in physical theory such as the theory of relativity is fundamental. That was never an issue. It also happens to be true that this speed of light has a real physical value in (say) wavelengths of some transition /s, and that this value can be measured and does have an error bar. In contrast, as I am sure you agree, the so called speed of light in SI units is a convention, can have any value whatsoever. It is not measured, and has no error bar. The metre is adjusted to make this value of so-called speed of light to whatever you choose. The only experimental input to the metre is just a transit time of light. There is no fundamental length unit in the SI system. In no way can this arbitrary number for so-called speed of light be taken as indicative of the physical entity "speed of light" because the metre definition precludes ever getting a value different from the defined value. The units system is "elastic". It cannot express the concept of length traversed per unit time, as there is no length input in this system, only time input.
To put it differently, the speed of light in (wavelengths of some atomic transition) / (transit time) contains more physical information than does the statement of the speed of light in m/s. Brews ohare (talk) 18:39, 26 August 2009 (UTC)
- I think missing from all this argument is *why* the meter is defined this way - it's precisely *because* the speed of light appears (by all experimental evidence) to be a real, universal, physical constant. So the two uses of c, the fundamental physical constant and the 'conversion factor' are not independent - the second was a direct result of the first. For example, a similar definition of the meter would not work at all if the speed of sound was used instead of the speed of light. LouScheffer (talk) 02:37, 27 August 2009 (UTC)
- I'd agree with that, Lou. The fact one is permitted to use a conversion factor to relate length to time of transit is a result of the confidence with which the speed of light can be realized, even if you do not know what that speed is, and make no attempt to measure it. (One complication is realizing "vacuum".) However, the numerical value of this conversion factor is arbitrary, and is independent of whatever the actual speed the speed of light may have in vacuum. Brews ohare (talk) 05:09, 27 August 2009 (UTC)
- I agree with Lou's too. We could say more about why the metre was defined the way that it was, but anything we say must reflect current mainstream scientific thinking, as described in reliable sources, in the subject. We do have the reasons that the standard was changed in 1983, from the people who actually made the change, see my reply to Edward below. Martin Hogbin (talk) 11:37, 27 August 2009 (UTC)
- You are of course correct that "the speed of light in (wavelengths of some atomic transition) / (transit time) contains more physical information than does the statement of the speed of light in m/s". With definitions expanded, the former is a comparison of two different physical phenomena, the latter is a statement of a conventional scaling factor.
- Given the post-1983 definitions, the physical content that is contained in the first statement is now expressed in the statement "the wavelength is x m", which previously would have been an exact statement of a conversion factor, with no physical content. EdwardLockhart (talk) 05:37, 27 August 2009 (UTC)
- Actually, Edward, the pre-1983 definition of the meter contains exactly the same information as the later one, or at least the 17th Conférence Générale des Poids et Mesures thought so (See point 7 in this link ]). The specified atomic transition of krypton emits light of a particular frequency. The wavelength of this light depends on the speed of the light, thus the specified krypton transition was actually being used as a frequency standard, with the meter effectively being defined as the distance light travels in a specified number of periods of the krypton radiation. Later advances in technology meant that the frequency of the krypton radiation could be measured against the existing caesium frequency standard. By stating the time of travel in seconds rather as a number of periods the krypton radiation it became possible to use other, more stable, sources of light, and the existing caesium time (frequency) standard to define the metre. You can read about it in this link kindly provided by Brews ]. Martin Hogbin (talk) 11:15, 27 August 2009 (UTC)
- I think you've misread ]. Point 7 says that the various *proposed* standards mentioned in point 6 are equivalent, not that the new standard is equivalent to the old one. I believe the following two pairs of statements are equivalent:
- Pre-1983 - the speed of light is approx 299,792,458 m/s, the wavelength of is exactly 1/1,650,763.73 m.
- Post-1983 - the speed of light is exactly 299,792,458 m/s, the wavelength of is approx 1/1,650,763.73 m.
- In each case, one statement is a definition of our length unit (but phrased in a curious way), and the other statement is a physical observation using that unit. The 1983 definition change flipped the roles of these two physical phenomena. And in so doing, it made a philosophical (if not a practical) difference to the statement of the speed of light in SI units. EdwardLockhart (talk) 12:04, 27 August 2009 (UTC)
- I was referring to this statement, 'that these various forms, making reference either to the path travelled by light in a specified time interval or to the wavelength of a radiation of measured or specified frequency, have been the object of consultations and deep discussions, have been recognized as being equivalent and that a consensus has emerged in favour of the first form'. They are clearly saying here that using the wavelength of a specified radiation and using the time travelled by light in a specified time are equivalent. Martin Hogbin (talk) 13:50, 27 August 2009 (UTC)
- I think you've misread ]. Point 7 says that the various *proposed* standards mentioned in point 6 are equivalent, not that the new standard is equivalent to the old one. I believe the following two pairs of statements are equivalent:
I agree with EdwardLockhart that equivalent to the BIPM means equivalent within the context of length comparisons using the SI units, not physical equivalence. As the actual, physical speed of light simply cancels out in any length comparison:
any length comparison is "equivalent" to a "time-of-transit" comparison. The "fundamental discussion" for the BIPM is simply whether the length ratio or the time ratio has the greater error bar. Brews ohare (talk) 12:43, 27 August 2009 (UTC)
BIPM statement
Martin has brought up some sources for discussion. One of these sources is BIPM, which states:
that these various forms, making reference either to the path travelled by light in a specified time interval or to the wavelength of a radiation of measured or specified frequency, have been the object of consultations and deep discussions, have been recognized as being equivalent and that a consensus has emerged in favour of the first form
The metrology advantage of replacing length comparisons with time-of-transit comparisons is that the measurement of time-of-transit involves only a time measurement error, and this error is small compared to length comparison based on fringe-count (interference pattern) comparisons.
Of course, the BIPM is a metrology organization concerned with the SI system of units, that is, with practical criteria of convenience and upon accuracy sufficient within the SI system of units, and unconcerned with "equivalence" of methods in the more strict sense of physical law. They are concerned with only length comparisons and are not concerned at all with the actual speed of light, which is unnecessary to their chosen time-of-transit methodology.
In other words, use of a conversion factor, chosen arbitrarily as 299 792 458 m/s but equally any other number, simply reduces length measurement to being identically the same as measurement of transit time. The actual speed of light is not necessary, and indeed is not even a knowable (measurable) within this approach. It is simply a defined value, arbitrary, chosen for convenience. Brews ohare (talk) 12:32, 27 August 2009 (UTC)
NIST document
Martin has brought up the source NIST paper for discussion. Martin has suggested that this source supports this view expressed by Martin: "By stating the time of travel in seconds rather as a number of periods the krypton radiation it became possible to use other, more stable, sources of light, and the existing caesium time (frequency) standard to define the metre."
This statement of Martin's is not (to me) terribly clear. What tipped the scale to comparisons of "time-of-transit" for comparing lengths, rather than comparison of "counted interference fringes" was that time measurement errors became much smaller than fringe-counting errors as technique improved.
As the actual, physical speed of light simply cancels out in any length comparison:
any length comparison is "equivalent" to a "time-of-transit" comparison.
It is totally irrelevant what the actual value of c might be, so long as one can be sure that the same value appeared in both lengths. Consequently, one is free to choose any value for c whatsoever. In addition, one never needs to measure the value of c .
A consequence of this
definition is that the speed of light is now a defined
constant, not to be measured again. NIST paper
The definition of the metre by BIPM and NIST is really not a length definition at all, but the identification of a standard time of transit namely tstandard = 1/299 792 458 s. When one says a length is so many metres, one really is saying the length has a transit time in vacuum of so many tstandard units. Brews ohare (talk) 12:55, 27 August 2009 (UTC)
- When you add the unit of metre you are putting the definition of c back into the value for distance.
- Thanks for the quote from NIST; it shows that one credible body, at least, believes that c is defined as exactly 299 792 458 m/s. This is a credible enough source that I think we can include that value in the lead now without any objections. TStein (talk) 14:12, 27 August 2009 (UTC)
TStein: A bit more care is needed here before rushing ahead with this quote. This whole mess is just a result of the confusion engendered when the literature uses the same exact wording for different concepts. It happens again and again. Examples are centrifugal force and Faraday's law and electromotive force. In this case, BIPM refers to an arbitrary conversion factor with absolutely no physical significance as the speed of light, while the structure of spacetime also uses the notion of speed of light in an entirely different way.
By introducing wavelength, a true length is invoked. On the other hand, the present-day metre is actually not a length, but a new name for a standard transit time of 1/299 792 458 s. This time is converted to a length by a fictitious dimensional conversion factor.
The key to this jumble is that the actual, physical speed of light simply cancels out in any length comparison:
any length comparison is "equivalent" to a "time-of-transit" comparison. It is totally irrelevant what the actual value of c might be, so long as one can be sure that the same value appeared in both lengths. Consequently, one is free to choose any value for c whatsoever. Obviously, the same is not true of the relation:
so length (e.g. atomic wavelength) depends critically upon the actual speed of light, a matter no longer of any concern to NIST or BIPM, at least wrt the SI units. Brews ohare (talk) 14:50, 27 August 2009 (UTC)
Third paragraph
What does this paragraph add to the lead? It seems to me that it is of passing interest only and should be relegated to the body of the article. Abtract (talk) 20:34, 25 August 2009 (UTC)
- The lead is meant to be a summary of the article. In this case it does seem that the lead has some odd points in it that are not covered in the article. So, I agree in general. The questions are, where should the information now in the lead be put and should we have a very brief summary of it in the lead? Martin Hogbin (talk) 21:52, 25 August 2009 (UTC)
Google summary
A google search for speed of light returns this page (good), but the extract is: "Here, laser light in air is traveling at about 99.97% the speed of light in a vacuum (the refractive index of air being about 1.0003). ..." (bad). I assume because this is the first mention in the article text. I tried moving the picture & caption to after the lead paragraph, but that made the layout worse. Does anyone know how to fix this? EdwardLockhart (talk) 04:24, 26 August 2009 (UTC)
- I don't think that "fixing" the google snippets is among the wikipedia editing guidelines; leave it alone. Dicklyon (talk) 04:29, 26 August 2009 (UTC)
Lead picture
This seems to add nothing to the article except maybe confusion by talking of light travelling at % of the SoL. IMHO we would be better with no pic than this one. Abtract (talk) 21:55, 26 August 2009 (UTC)
- We need a picture of some sort. I see nothing wrong with the current one. Maybe it is the caption that you do not like. This is also the cause of the problem above. Martin Hogbin (talk) 22:53, 26 August 2009 (UTC)
- I think the caption is good, as it clarifies that, in air, light travels at less than the speed of light. Or maybe it should say 99.97% of c if that's more clear. Dicklyon (talk) 23:54, 26 August 2009 (UTC)
- I see no reason why we need a picture of some sort (Speed of sound has none in the lead) but, even assuming we do, why on earth would we choose one that showed light travellling at less than c? I much better picture imho would be of a celestial object with the statement that "light takes xx years to travel from the zzz galaxy to earth" or maybe of the moon or sun with a similar caption. An alternative would be a picture of the equipment used in one of the historic experiments to measure the SoL. Abtract (talk) 08:35, 27 August 2009 (UTC)
- I think we need a lead image for FA status. I am not fighting for this particular picture, if you can fine a better one or some candidate images the please present the here where we can argue endlessly about them ;-) Martin Hogbin (talk) 11:20, 27 August 2009 (UTC)
- I have replaced it with a picture of the sun, the source of our natural light. Abtract (talk) 12:59, 27 August 2009 (UTC)
- I like that. However, in order to hint at the article's subject (a speed), lets replace the caption "Light takes 499 seconds to travel from the Sun to the Earth" with "Light takes about 500 seconds to cover the 150 million Km distance from Sun to Earth". DVdm (talk) 13:10, 27 August 2009 (UTC)
- Why not, Travelling at 299,792,458 m/s, light takes about 500 seconds to cover the 150 million km distance from Sun to Earth, This get round the problem that Edward noticed. Martin Hogbin (talk) 13:42, 27 August 2009 (UTC)
- Excellent. I gofered it. DVdm (talk) 14:36, 27 August 2009 (UTC)
- By the way, an even better picture would be one where we see Earth on the foreground and a distant Sun on the background, like this... DVdm (talk) 14:48, 27 August 2009 (UTC)
- Excellent; I like that useful picture and the meaningful caption but while we are rounding we may as well do a complete job. Abtract (talk) 15:28, 27 August 2009 (UTC)
- I'd vote for the exact value, but I wouldn't have a fight over it ;-) - DVdm (talk) 15:35, 27 August 2009 (UTC)
The new "L2" illustration is terrible here, as it's dominated by graphical information that's off topic and goes unmentioned. Dicklyon (talk) 16:23, 27 August 2009 (UTC)
- Let's edit the L2 part out of it or find a better one. Here is the edited version. I don't know how to add it as another alternative version at - DVdm (talk) 16:52, 27 August 2009 (UTC)
I edited the picture (originally from a govt source) and enlarged the titles. See what you think. Brews ohare (talk) 14:15, 28 August 2009 (UTC)
- Exactly what I had in mind :-) DVdm (talk) 14:17, 28 August 2009 (UTC)
introduction to the speed of light
may a make the same observation i made some time ago in the torque article . this reads like a thesis for a physics degree and is not very interesting to most people . i would suggest to make the introduction readable and understandable for a ten year old , pretend it is your child who wants some information and keep the highly sophisticated stuff for the rest of the article .
Wdl1961 (talk) 15:03, 27 August 2009 (UTC)
- May I suggest that you use proper capitalisation and punctuation in your talk page messages? Imagine the influence your way of writing might have on these kids. DVdm (talk) 15:13, 27 August 2009 (UTC)
- Wdl1961:How about some concrete suggestions on how to simplify the lede.
- Remember that this article is primarily about the constant c which relates space and time and is not simply the speed at which light travels. For that reason the inherent difficulty level of this article is akin to that of special relativity; I am not quite sure how advisable it would be to write the lead of special relativity so that it is understandable by a 10 year old. The same is true for this article. If you can do it or make a suggestion that works then more power to you, though. TStein (talk) 15:26, 27 August 2009 (UTC)
The best approach so far to simplifying the lead is that of Dicklyon: introduce the speed of light with an approximate value; avoid startling terms like exactly 299 792 458 m/s and the concept of defining the metre to make this so; and follow the lead with the "Speed of light by definition" subsection where matters can be discussed carefully without severe length limitations. Brews ohare (talk) 15:54, 27 August 2009 (UTC)
I am trying a rewrite on my name page.
One suggestion is to rename it as "C" the speed of light Abtract (talk) 16:00, 27 August 2009 (UTC)
- You might find it more convenient than replacing your user page to create your draft article by making a new page User:Abtract/Speed of light which you can link to your user page by inserting this link at the top of your user page. Brews ohare (talk) 16:09, 27 August 2009 (UTC)
Proposed new lead section
My suggested rewrite can be found here (I don't use my user page for anything else but thanks for the idea). IMHO this is more inline with wp:lead, is more user friendly (tells a story) whilst still being scientific, and brings all(?) the salient points to the fore. Whether it will bring together the two sides of the divide remains to be seen but it clarifies the circularity problem. Naturally it needs refinement even if you have some liking for it. Abtract (talk) 17:11, 27 August 2009 (UTC)
- It looks acceptable to me. I'd suggest using something like "In physics, the speed of light 'c' " as being more in keeping with a standard intro line, and allowing the use of a lower case c. Brews ohare (talk) 17:32, 27 August 2009 (UTC)
- Personally I prefer to leave out "In physics" because that somehow seems to diminish the importance of the SoL, but let's see what others say. I do agree with the lower case c so I have reordered the beginning and maybe the article might be better named The speed of light ... "c"Abtract (talk) 08:36, 28 August 2009 (UTC)
- "For many years thought to be infinite," - I think it would be more accurate to say it wasn't known if it was infinite or simply very fast. Or even for that matter whether it made sense to talk of a speed at all. EdwardLockhart (talk) 05:55, 28 August 2009 (UTC)
- I have changed it along those lines. Abtract (talk) 08:36, 28 August 2009 (UTC)
- Your proposal now says that the speed of light was previously assumed to be instantaneous. If you read the relevant section of the article| it should be clear that this is not the case - from Empodocles onwards, some thinkers on the subject have thought that light takes some time to travel. Equally others, such as Aristotle, didn't believe there was any movement going on, meaning there would be no such thing as a speed. EdwardLockhart (talk) 08:46, 28 August 2009 (UTC)
- OK it is quite difficult to get the idea across in a few words but I will try again. Abtract (talk) 10:26, 28 August 2009 (UTC)
- Your proposal now says that the speed of light was previously assumed to be instantaneous. If you read the relevant section of the article| it should be clear that this is not the case - from Empodocles onwards, some thinkers on the subject have thought that light takes some time to travel. Equally others, such as Aristotle, didn't believe there was any movement going on, meaning there would be no such thing as a speed. EdwardLockhart (talk) 08:46, 28 August 2009 (UTC)
- I have changed it along those lines. Abtract (talk) 08:36, 28 August 2009 (UTC)
No way The current lead is the result of pages of discussion, cooperative editing, and a considerable degree of consensus amongst editors here. There is no possible benefit to our readers in not giving the exact speed of light at the start of the article, and this seems to be a plan to avoid doing that. The only reason for not wanting to give the exact speed is that, despite extensive discussion, some editors still do not understand why the speed is now exact. I do not think the style of the proposed lead is terrible encyclopedic and it contains a number of dubious or unclear statements. No doubt it could be improved but that would then start the whole cycle of editing and arguing all over again.
I am not against careful rewriting of the lead to improve the English and style and but the content has been discussed in great detail and I suggest that it should not be changed dramatically like this. The content should evolve slowly as a result of discussions between editors to reflect consensus views. Martin Hogbin (talk) 09:30, 28 August 2009 (UTC)
- I don't know how to respond to Hogbin's accusatory dismissal of my proposal except to say I thought it was a "careful rewriting". There is no "plan" just a reflection of my, and I thought others', opinion that starting with a very close approximation would be much easier on the eye and therefor more reader friendly, and by then taking the reader gently through a brief history we could lead them to the exact figure and explain how it arose. The final para explains the importance of c. All this imho is what a lead should do and seems to accord with wp:lead. I await other comments with interest. Abtract (talk) 10:26, 28 August 2009 (UTC)
- Sorry Abtract that my remarks appeared accusatory. Let me explain the individual points that I was trying to make.
- There was a very long discussion on what numerical value we should show in the lead followed by an RfC. There was there a clear consensus to show the exact value first (I believe that this same consensus should apply to the picture caption). The two editors who were against doing this took that view because they believed that the exact value was, in some way wrong, a position clearly not in accordance with the generally accepted scientific view. I proposed adding that 300,000,000 m/s was often used as a convenient approximation, but it seemed that most editors were against this. For many readers there is a simple question, 'What is the speed of light', and to this question there is a simple answer, '299,792,458 m/s'. I cannot see how anything is made simpler by saying it is about 300,000,000 m/s followed some while later with 'well actually it is '299,792,458 m/s'. For those interested in why the value is exact (many may have no interest at all in this fact) we have a section devoted to that subject in the article.
- We should be trying to improve this article by cooperative editing. This cannot be achieved by every editor rewriting the lead in their own words. We all have different talents and it is better to try to use them together to produce something better than any individual could have done. Martin Hogbin (talk) 14:16, 28 August 2009 (UTC)
I'm in broad agreement with Martin - the exact value of c in m/s should be at the top. This was the concensus of lengthy previous discussion, which I think you missed. I'm not convinced either that so much history of mistaken ideas and imprecise estimates should be in the lead - other articles on scientific topics don't generally take this approach. EdwardLockhart (talk) 13:11, 28 August 2009 (UTC)
- The proposed lead by Abtract in its original version contained the SI units conversion factor exactly, as seems to be desired by EdwardLockhart & Martin Hogbin, and contained the wording:
For technical reasons in 1983, the metre was redefined using this value as a conversion factor. This had the effect of 'fixing' c at exactly 299,792,458 metres per second in the International System of Units.
- This wording is accurate. The present wording:
In physics, the speed of light is a fundamental physical constant, the speed at which light and all electromagnetic radiation travels in vacuum. It is usually denoted by the letter "c". In the International System of Units, the metre is defined so that c has the exact value of 299,792,458 metres per second.
- juxtaposes two different usages for the term "speed of light" without distinguishing between them, and is in fact incorrect on that account. More detail on this point is found at NIST document and at Some math.
- The first form of wording by Abtract should be adopted. Brews ohare (talk) 14:13, 28 August 2009 (UTC)
We cannot pander to the views of those who do not understand the consequences of the current definition of the metre. The page must reflect current mainstream scientific thought on the subject. Martin Hogbin (talk) 14:16, 28 August 2009 (UTC)
- Martin Hogbin: The word "pander" is, of course, inflammatory. You make the further unsupported claim that you understand the implications of the SI units conversion factor.
- The problems with your view of this factor have been carefully explained to you here, and on the page you created for discussion of this point, and you have not succeeded in supplying any source or argument that supports your views.
- What you have done is continually reiterate your unsupported view, namely, that the SI units conversion factor is the numerical value of the physical constant called the speed of light throughout special relativity and the rest of physics. You have never advanced argument or sources, not attempted to meet sourced objection. You do not understand the 1983 BIPM definition of the SI units conversion factor, nor its implications, nor its limitation to the SI units. You have not addressed the three sources by Wheeler, Sydenham or Jespersen that refute your viewpoint . Brews ohare (talk) 14:38, 28 August 2009 (UTC)
I did indeed miss it and, although I have looked at some of the more recent discussions, there seems to be so much heat generated that I have tried to put together a lead which, as it should be, is a summary of the article, brings out the salient points and makes the reader want to know more. IMHO the salient points are: 1) how we reached the counterintuitive conclusion that light has a speed 2) some idea of how the SoL is measured 3) what the measured speed is (300,000 km/s will be a good degree of accuracy for 90% of readers and is much simpler to read), 4) how we came to have a fixed exact figure 5) why c is so important and in what fields. All these points are to be found in the article in much more detail ... I don't think I have missed any important points. One more point on the use of 300 early in the lead with the exact figure saved for after the story has unfolded ... it isn't as though 300,000 km/sec is incorrect, it is the correct figure stated to three significant figures. I quite fail to see why showing c to nine significant figures in the first paragraph should arouse such high feelings. Pi is approximated in the lead as 3.14159 but given much more accurately later in the article; interestingly e is not shown as a number at all until the 4th paragraph and the Gravitational constant is first shown in numeric form at the end of the 3rd paragraph; Planck constant is not mentioned numerically in the lead, being relegated to a side box; the Fine-structure constant doesn't really count because the lead is only one very short paragraph; there are two with a high degree of accuracy early in a decent sized lead Elementary charge (1st para) and Vacuum permittivity (2nd para). All this demonstrates that other editors in other similar articles have taken a pragmatic approach and used approximations and more accurate figures where they fitted the particular story ... that is what I have tried to do, hoping it would satisfy the warring factions here. This is not pandering. Abtract (talk) 14:36, 28 August 2009 (UTC)
- Your present proposed lead is acceptable to me. You appear to have dropped a reference for the speed of gravitational waves: Wei-Tou Ni (2005). "Empirical foundation of the relativistic gravity" (PDF). Intl J Modern Physics D. 14: 901–921. Brews ohare (talk) 15:41, 28 August 2009 (UTC)
- So why not just restore the reference? Martin Hogbin (talk) 16:12, 28 August 2009 (UTC)
Gentlemen, according to current, generally accepted, mainstream scientific thinking there is only one speed of light and it is exactly 299,792,458 m/s. Pi and e are transcendental numbers and must always be approximated in any finite numerical representation. Martin Hogbin (talk) 16:10, 28 August 2009 (UTC)
- Martin Hogbin: Abtract's present lead is accurate and appears to me to meet all your requirements. Why, specifically & in exact detail, do you not wish to adopt it? Brews ohare (talk) 16:16, 28 August 2009 (UTC)
Since no-one seems to have any objection tomy proposed lead except for the rounding in the first para, I am going to be bold put it in. The only change I will make is that I will put the exact figure in the first para but without the word "exactly" which I hope may 'satisfy' both sides (although why there are 'sides' in this beats me). Abtract (talk) 09:41, 29 August 2009 (UTC)
- I have a strong objection to your lead and I have clearly stated it above. It starts with No way! Martin Hogbin (talk) 10:22, 29 August 2009 (UTC)
- Yes so it appeared at first sight but, having overcome my shock at the tone, I could only find one actual point - the use of an approximation - I have altered that. What more do you require? Abtract (talk) 10:57, 29 August 2009 (UTC)
- As I have just said in reply to Tim Shuba it is not that I think your lead is that bad but there are a few things about it that need changing. However, there is absolutely no point in me or any other editor doing this because the likelihood is that someone else will rewrite it from scratch again. If this is going to be the ethos of editors here than we will never reap the benefits of cooperative editing. What I would like is for you to discuss exactly what was wrong with the original lead (which was far from perfect) so that we can all work together to improve it.
- Yes so it appeared at first sight but, having overcome my shock at the tone, I could only find one actual point - the use of an approximation - I have altered that. What more do you require? Abtract (talk) 10:57, 29 August 2009 (UTC)
- It is generally true that a lead written by one person is likely to read better than one edited by several people over a period of time. I would therefore suggest that we should finalise the content and order of the lead and then, when that is agreed, one person should rewrite it to improve the style and presentation. Martin Hogbin (talk) 11:06, 29 August 2009 (UTC)
- Apologies, I thought I had made it clear previously ... the previous lead was not bad but it failed in a couple of key aspects imho 1) it did not bring out the history suffieciently well (I have expanded it), 2) it overemphasised the "exactness" too early and failed to explain in properly later (this is all tied up with my 'circularity' point and ohare's point too I believe), 3) it did not 'read' very well (maybe your point about one editor v many). If you compare the two versions, I haven't actuallt changed it much just sharpened it up , reordered slightly and extended the history including clarifying the exactness point ... and, maybe important to you,I have delayed using the word exact until later in the piece. Abtract (talk) 11:40, 29 August 2009 (UTC)
- So what exactly is you 'circularity point'? Martin Hogbin (talk) 12:30, 29 August 2009 (UTC)
- As it was the last time we discussed it: defining the metre in terms of the SoL and then stating the SoL in units of m/s says absolutley nothing about the SoL (except that we all have in our mind a vision of the metre as previously defined independently of the SoL). I don't think we can escape this circularity but we can 1) not bother the reader with it too soon, and 2) explain it at the end of the historical story so that it makes some sort of sense in context. I have tried to do both. I have no axe to grind in this matter except producing a readable, useful and scientifically correct article ... Abtract (talk) 13:27, 29 August 2009 (UTC)
If the metre is defined in terms of the second and the speed of light, an obvious and inevitable consequence of this definition is that the speed of light will have a fixed numerical value when measured in metres per second. If this is what you meant by 'circularity problem' then yes, this is true, get over it! This is not a world shattering revelation or a dark secret revealed only to the chosen few, it is a fact that is quite obvious to nearly everyone.
If you meant that nobody knows roughly how long the meter is, it is about this long , so from an intuitive perspective giving the speed of light in metres per second is no different from giving it in furlongs per second; you have to know roughly how long a furlong is for the value to have any intuitive meaning.
If you mean that nobody knows exactly how long a meter is then you are right. All issues of experimental error and imprecision manifest themselves in the practical realization of the meter. Mind you, they can get pretty close these days.
If you are going to assert that there is a 'circularity problem' with the exact speed of light you must find a reliable source that states, in plain English, that there is a circularity problem (or indeed a problem of any kind) with the current definition of the metre. You have seen the statements from the world and US standards authorities stating the exact value of the speed of light and they are quite clear. If you want to argue with this you must find a source that plainly and simply disagrees with what BIPM and NIST say. Bizarre interpretations of sentences plucked from good sources are not acceptable. Martin Hogbin (talk) 13:52, 29 August 2009 (UTC)
- I am really sorry that you do not understand my point or indeed the topic, as evidenced by "If the metre is defined in terms of the second and the speed of light, an obvious and inevitable consequence of this definition is that the speed of light will have a fixed numerical value when measured in metres per second" which would only be true if you substituted "stated" for "measured". I think, under these circumstances, we had better stick to discussing content. What changes would you like to see to the current lead, and why? Abtract (talk) 14:21, 29 August 2009 (UTC)
- You are quite right, 'measured' was a poor choice of words. Change it to 'stated'. Now, what was your problem? Martin Hogbin (talk) 14:25, 29 August 2009 (UTC)
- I don't have a problem ... what changes would you like to see? Abtract (talk) 14:33, 29 August 2009 (UTC)
- I would like to see it restored to its earlier consensus version which said, 'In the International System of Units, the metre is defined so that c has the exact value of 299,792,458 metres per second'. How does your 'circularity' point apply to this?
- Imho it is best not to burden the reader with the counter intuitive "exact value" until it can be placed in context later in the lead. According to wp:lead "The first paragraph of the introductory text needs to unambiguously define the topic for the reader, without being overly specific". I believe the words "exact value" are "overly specific". Perhaps you could explain why it is important to you to include those words in the first para?Abtract (talk) 16:28, 29 August 2009 (UTC)
within the SI system of units
User Headbomb removed the phrase within the SI system of units from the following: "The effect of this definition is to fix the speed of light in vacuum at exactly 299,792,458 m/s; thus, within the SI system of units, the speed of light is now a defined constant and can no longer be measured."
with the cryptic comment "untrue". However, the source supports the statement, and the use of a defined value for c certainly applies within the SI system, and not necessarily for other systems of units (for example, not for the pre-1983 system of units). Brews ohare (talk) 17:17, 27 August 2009 (UTC)
Mathematical elaboration
User Headbomb removed this mathematical follow up of the references by Boyes and Smolin with the comment "untrue"
"Measurement is basically comparison between the quantity being measured and the standard unit; it is a matter of ratios. Setting the speed of light to a definite numerical value when measured in the SI units of m/s simply means comparisons of length become comparisons of transit times of light. Mathematically, comparison of two lengths ℓ1, ℓ2 with times-of-transit of light, t1, t2 may be expressed as the ratio:
which is independent of the the speed of light c."
This mathematical elaboration explains further what these sources have said, and is certainly "true". Thus, at a minimum Headbomb's deletion is poorly justified. Brews ohare (talk) 17:25, 27 August 2009 (UTC)
- No it is not true, because you are not comparing transit times, you are comparing a length (of say a table) with another length (the distance covered by light in vacuum in 1 / 299972458 seconds). That ltable/lmeter = tlight across table/tlight across meter only illustrates that is it equivalent to compare transit times. Looking back reverting may have been overdramatic. Headbomb {κοντριβς – WP Physics} 17:49, 27 August 2009 (UTC)
- Headbomb: If t2 = 1 / 299972458 s then ℓ1 is in metres. Brews ohare (talk) 18:28, 27 August 2009 (UTC)
Some math
The wavelength of a given frequency of light is exactly equal to the period of that radiation multiplied by the actual, physical speed of light, which is not the BIPM arbitrary conversion factor. BIPM is interested only in length comparisons, which for a fixed speed of propagation c are transit-time comparisons (See footnote ):
where c can be any arbitrary speed, so long as it is the same speed for both transit-time measurements. In the SI units, for example, if t2 = 1 / 299 792 458 s then ℓ1 is in metres.
At least insofar as the SI units are concerned, BIPM is not interested in lengths per se :
which length requires the actual, physical speed of light (preferably measured using 2009 techniques, rather than a 1983 estimated value), not an arbitrary conversion factor set by committee.
- Footnote: Measurement is basically comparison between the quantity being measured and the standard unit; it is a matter of ratios. See Smolin Brews ohare (talk) 14:58, 28 August 2009 (UTC)
We have a consensus
I am not going to get involved in yet another edit war about the same subject - whether the speed of light is exact or not. There was a clear consensus to quote the exact sped at the start of this article and I see no reason why this does not apply to the caption of the lead image. Martin Hogbin (talk) 16:47, 28 August 2009 (UTC)
- It simply is bad practice to state a rounded-off distance in the figure, indicate a rounded-off time, and then relate the two in the caption to a speed calculated to nine figures. It is stupid. Brews ohare (talk) 17:01, 28 August 2009 (UTC)
- Martin Hogbin: Abtract's present lead is accurate and appears to me to meet all your requirements. Why, specifically & in exact detail, do you not wish to adopt it? That would replace your so-called "consensus" (actually a cramming down of your own wording) with unanimity. Brews ohare (talk) 17:06, 28 August 2009 (UTC)
- I see the speed has now been removed from the caption. There was a reason that it was there, which is Edward's observation that this caption is the text that appears when you do a Google search on the speed of light. It was agreed that it might be useful to have the value of the speed of light in this text. I am not particularly that fussed about that but my real concern is this: The structure and wording of this article are still being influenced by a minority of editors who, despite the clear statements of impeccable sources to the contrary, insist that there is something wrong with stating the exact speed of light in m/s. I would like some support in taking a stand against this nonsense, which is still taking up pages of discussion and causing silly arguments about the wording of the article. Martin Hogbin (talk) 20:26, 28 August 2009 (UTC)
And the speed disappeared from the caption long ago. And cooperative discourse does not involve terms like "nonsense" and "silly arguments" to characterize what, in fact, are solid arguments supported by sources, not to be dealt with by rounding up a lynch mob. And we have an acceptable proposal in front of us at User:Abtract for a lead that Martin Hogbin refuses to discuss at all. Brews ohare (talk) 00:13, 29 August 2009 (UTC)
Aggressive editing spree now over
Ah, that was refreshing. I am calm now, and I will expect and enjoy any and all excoriations and reversions. Tim Shuba (talk) 04:05, 29 August 2009 (UTC)
- Commentary for Tim Shuba: In the first line of your lead is the phrase: "In physics, the speed of light is a fundamental physical constant, the speed at which light and all electromagnetic radiation travels in vacuum."
- I agree with that.
- The second sentence is: "It is usually denoted by the letter ‘c’."
- I agree with that.
- The third sentence is: "In the International System of Units, the metre is defined so that c has the exact value of 299,792,458 metres per second."
- From this concatenation, I'd take this 'c' to be the same as the 'c' from the first two lines. However, that is not quite so. One could say: "In the International System of Units before 1983, the metre is defined so that ‘c’ has the approximate measured value of 299,792,458 metres per second."
- Or, one could say: "In the International System of Units following 1983, the term ‘speed of light’ is used to refer to a conversion factor denoted by ‘c’ that has the exact value of 299,792,458 metres per second." One could elaborate upon that point, to be sure.
- However, the key here is that the ‘c’ referred to in the 1983 definition is not the ‘c’ referred to in the first two lines of your intro. In 1983, length was replaced in the SI units by "time of transit" and conversion of such times is accomplished by an exactly defined conversion factor 299,792,458 metres per second. This conversion factor, being defined, clearly lies outside any kind of measurement.
- One might argue that because the metre is defined elastically to make this so, you cannot argue about the value of the conversion factor. True. However, this elastic metre that makes ‘c’ unmeasurable and exact, also removes this meaning of ‘c’ from referring to the "fundamental physical constant" of the first two sentences, which most certainly is measurable, and most certainly is not known exactly. The SI conversion factor is not the numerical value of the "fundamental physical constant", even in SI units. It is just a conversion factor.
- The fundamental speed of light is made measurable by introducing a length (like a wavelength) that is not elastic.
- These points have been argued more carefully on this page, and sources supplied. Feel free to delve in further.
- I find User:Abtract's leading sentences to be technically correct and yet convey all that you want to say unambiguously. Brews ohare (talk) 05:31, 29 August 2009 (UTC)
- I've been unable to locate any recent sentences by Abtract that differ in any way that I can discern from the ones you're complaining about. Can you be more clear about what you would prefer to see that would "be technically correct and yet convey all that you want to say unambiguously"? Dicklyon (talk) 06:11, 29 August 2009 (UTC)
- Dicklyon: The wording in Abstract's lead is
Brews ohare (talk) 14:20, 29 August 2009 (UTC)by the mid-20th century, the speed of light was known to be approximately 299,792,458 metres per second. For technical reasons in 1983, the metre was redefined using this value as a conversion factor. This had the effect of 'fixing' c at exactly 299,792,458 metres per second in the International System of Units.
- Dicklyon: The wording in Abstract's lead is
Say what? You won't find "my lead" anywhere. I copyedited and united two paragraphs in the lead. That's all. I didn't add a single word or concept of my own to it. Please don't interpret that to mean that I want to get bogged down in your personal obsessions about some purported problems with some particular definition of the speed of light. As I intimated in the first post to this section, you or anyone else should feel completely free to revert or change anything in my recent edits. That would certainly be preferable to polluting yet another section of this talk page with your useless "commentary". Tim Shuba (talk) 06:43, 29 August 2009 (UTC)
- Tim Shuba Your suggestion that I dive into the article and rewrite it without discussion indicates little familiarity with what has been going on with this article. Likewise, you show no familiarity with the discussion on this Talk page. Calling my comment to you on the Talk page "pollution", rather than providing any response to it beyond pejorative characterization, is impolite and underscores your lack of understanding of decorum and of the use of a Talk page. Brews ohare (talk) 14:31, 29 August 2009 (UTC)
- Brews ohare provides, in a direct response to me, a "commentary" in this section which has nothing, zero, nada, zilch to do with any edits I've made to this article or talk page, and expects me to respond and get involved in the tendentious editing that he has kept up for weeks? What a joke. Tim Shuba (talk) 15:58, 29 August 2009 (UTC)
- Thanks for you contribution Tim. Although I think that we should say something about the aether and the MMX, the section that you removed had clearly been hijacked by crackpot science. Best to start again from scratch rather than argue endlessly about what exactly is wrong with each word.
- Your work in improving the lead has been completely wasted. User:Abtract has decided that to rewrite it from scratch again. It is not that the new lead is that bad it is just that there is absolutely no point in trying to improve it as some other editor will then decide to rewrite it yet again.
- I am beginning to think that trying to get this article back to being a FA by cooperative editing is a lost cause. There seem to be plenty of editors around who support this idea in principle but not may who are prepared to act in a way necessary to achieve this aim.
- In my opinion a few more aggressive editing sprees by the right people would be most welcome. Martin Hogbin (talk) 10:56, 29 August 2009 (UTC)
In my opinion Abstract's lead should be adopted. If you differ, why not say why specifically, instead of urging your own form of words, which I find inaccurate for reasons explained at length here? It will not interfere with FA status, while your formulation will do so. Brews ohare (talk) 14:20, 29 August 2009 (UTC)
Approximate 300,000,000 m/s in lead paragraph?
Apparently we don't have as much consensus as it had appeared to start with the exact value in the opening paragraph. LouScheffer, Brews ohare, Abtract, and myself (Dicklyon) have all expressed a preference to open with 300,000,000 m/s and maybe also 186,000 mi/s approximation in the lead paragraph, and then introduce the complexity of a defined fixed value in a later paragraph, still in the lead. I don't think any of us are denying the fixed exact value, nor wanting to hide it, though we may have differing opinions on the deep philosophical implications of defining the speed of light and a system of units this way.
I understand that Martin Hogbin and some others are firmly set on wanting the exact value in the lead paragraph; but I'm not sure I understand why. Can we have some discussion on this again, without all the angst, but directed toward what makes a better wikipedia article? If each person with an opinion could limit themselves this weekend to one not-too-big well-thought-out position paragraph, we might start to collect some points of view and begin to understand each other. Please hold off a day or two on responding to each other and starting to argue the points, so that we can have the luxury of seeing who stands where on a simple issue for a change. Dicklyon (talk) 16:42, 29 August 2009 (UTC)
- As before, I've no objection to mentioning approximate values, as long as the exact value is also mentioned. Philosophicallly speaking the problems seem to be caused by different interpretations of the word distance. If you define distance between two points as the time it takes for light to travel (measured in seconds) then speed of light defined as d (s) /t (s) = 1 with no dimensions. If you define distance as the number of metres then speed of light defined as d (m) / t(s) = 299.... m/s exactly. Charvest (talk) 16:57, 29 August 2009 (UTC)
- Approximate in first para followed by 'exact' later in the lead. Imho wp:lead is clear in not advising too much detail too early. When that detail (nine significant figures and the word 'exact') may sidetrack readers before the context is known, I believe it should not be shown. I strongly favour not showing the word 'exact' until the history/context paragraph (of the lead) and I weakly favour using 300... in the first para because it is more user friendly (easier to read and all that most viewers need/want to know) whilst still being accurate (to three s.f.). This approach is aimed solely at helping the reader. Abtract (talk) 17:24, 29 August 2009 (UTC)
- I support the use of an approximate value at the outset, and an exact value, properly introduced, as in Abstract's Abtract |lead, later on. My reasoning is that early introduction of a nine or ten place number called "exact" for a speed of light that intuitively (and over centuries of history) would be thought of as a measurement, with a measurement error bar, along with the seemingly solipsist statement that the metre is "defined" to make it exact, is all just too much for a reader to absorb without more extended discussion. Arguing on the Talk page that a more extended discussion does appear in a later section "Speed of light by definition" is not too helpful, as that section is not mentioned in the intro. There is the further difficulty that the present formulation in the intro is in flat contradiction with the more correct presentation in the later "Speed of light by definition" section. Brews ohare (talk) 18:30, 29 August 2009 (UTC)
- If I might poke my head in here, I find it extraordinarly awkward that the opening paragraph on an article about the speed of light concludes by defining the length of a meter. I would suggest that the speed of light in m/sec simply be given, and then later in the article explain why and how this definition came to be.Clayhalliwell ([[User talk:
- Approximate first, "exact" and "defined" value later, still seems to me to be the right compromise; no need to complexify the opening with the idea of an exact defined value. As Millikan says, "It is sufficiently correct to remember it as 300,000 kilometers or 186,000 miles ." Dicklyon (talk) 22:12, 29 August 2009 (UTC)
Discussion of positions stated above
- We have just had a poll on this very subject (18 August), the votes were:
- A. Show only the approximate speed 1 Vote
- B. Show the approximate speed, followed by the exact speed 2 Votes
- C. Show the exact speed after the current first sentence 8 Votes Martin Hogbin (talk) 17:52, 29 August 2009 (UTC)
- Thoughts move on ... why not just give us your views? Abtract (talk) 17:59, 29 August 2009 (UTC)
- Martin, as Abtract suggests, can you give us your reasons above, as we've re-opened this question and apparently the old vote is no longer representative? Dicklyon (talk) 22:12, 29 August 2009 (UTC)
- If you want to assert that after just 11 days the old vote is not representative, I guess you should contact all those who voted last time and get their votes again. Martin Hogbin (talk) 22:49, 29 August 2009 (UTC)
- I'd guess that Martin Hogbin might provide his notions as to why the exact value should appear and any thoughts he might have as to why the intro should begin with a startling conundrum. Appealing to a majority vote in the past does little to flesh out the reasons for Martin Hogbin's support. Brews ohare (talk) 22:58, 29 August 2009 (UTC)
- The discussion in this article is hard to follow .
- Not being an expert i do know .
- The speed of light can be measured to 10^-11.
- Time can be measured to 10^-11.
- Distance or length can not be measured with that accuracy except for the Kaisers foot when he was still alive.
- What is the problem with by definition m=l/t ?. Wdl1961 (talk) 18:08, 29 August 2009 (UTC) p.s. Pi has been calculated to at least a million decimal places so you are way behind.
In response to Brews:
- The statement in the lead section is in no way in contradication with the longer section that appears later. The problem is that Brews simply cannot accept that there is no problem with fixing the speed of light in SI units. S/he seems to feel that it is better to fix in terms of the length of some arbitrary bit of metal. This argument has gone on over many pages, and should stop forthwith. Brews, if you don't shut up on the question, I will ask for you to be banned from all pages relating to the speed of light in any way. Consider yourself warned. Physchim62 (talk) 19:47, 29 August 2009 (UTC)
- Physchim62 might do well to reflect on the fact that threats rarely work and often rebound on the threatener ... time spent reaching the best wording, on the other hand, is rarely wasted. Abtract (talk) 20:15, 29 August 2009 (UTC)
- I am in no position to do anything except ask, so that can hardly be construed as a threat. I would not be the first editor to complain about Brews' behaviour. In the meantime, editing this article (and others like it) is wasted effort while we pander to the pseudoscience spouted by a couple of vociferous soapboxers. Physchim62 (talk) 21:34, 29 August 2009 (UTC)
- Physchim62 might do well to reflect on the fact that threats rarely work and often rebound on the threatener ... time spent reaching the best wording, on the other hand, is rarely wasted. Abtract (talk) 20:15, 29 August 2009 (UTC)
- The statement in the lead section is in no way in contradication with the longer section that appears later. The problem is that Brews simply cannot accept that there is no problem with fixing the speed of light in SI units. S/he seems to feel that it is better to fix in terms of the length of some arbitrary bit of metal. This argument has gone on over many pages, and should stop forthwith. Brews, if you don't shut up on the question, I will ask for you to be banned from all pages relating to the speed of light in any way. Consider yourself warned. Physchim62 (talk) 19:47, 29 August 2009 (UTC)
- Physchim62, I'd say your contribution on my user page is a threat: see Physchim62 threat. Your summary of my views in that threat as “You wish to advance a point of view which is quite obviously held only by an extreme minority, that is that most of physics was destroyed by the decision of the CGPM to fix the speed of light in SI units in 1983.” is complete balderdash. I defy you to cite any statement of mine that even borders on such a view. It is nuts! I do want their views correctly stated, as per solid sources: Wheeler; Jespersen; Sydenham, etc. I do not want incorrect inferences about their position, such as presently provided in the WP intro. Moreover, nothing said here by me is disruptive: my contributions all are a plea to deal with these sources directly, which pleas have resulted in repetitive harangue & hectoring, without sources or reasoning. What are your motivations for that behavior, eh? A better article, or just a chance to vent inner hostility?? Why do you attribute to me statements made up by yourself?? Brews ohare (talk) 22:47, 29 August 2009 (UTC)
In response to Dicklyon:
- A value can only be exact if it is defined. It's really no different from saying that the circumference of the Earth used to be exactly 40,000 kilometres (at last if you measured it along the Paris meridian). The speed of light is exactly 299 792 458 m/s, by the current definition of the metre. We're not helping anyone by pretending otherwise. Physchim62 (talk) 22:26, 29 August 2009 (UTC)
- I think I already stipulated my agreement to that. Dicklyon (talk) 22:33, 29 August 2009 (UTC)
- Physchim62: Enter the world of this discussion. Your comment is totally off the subject, and a point no-one disputes. Brews ohare (talk) 22:49, 29 August 2009 (UTC)
- According to Dick, 'the old vote is no longer representative'?? Martin Hogbin (talk) 22:57, 29 August 2009 (UTC)
- Right; in the sense that we now have at least 4 people pushing to start with the approximate value. Dicklyon (talk) 23:31, 29 August 2009 (UTC)
- In what way is giving the wrong answer less complex than giving the correct one? Martin Hogbin (talk) 23:16, 29 August 2009 (UTC)
- There's a difference between "wrong" and "widely used approximation". Dicklyon (talk) 23:33, 29 August 2009 (UTC)
- But you ware claiming above that giving the actual (rather than approximate) value complexified things. Why is this? Martin Hogbin (talk) 23:40, 29 August 2009 (UTC)
In response to Clayhalliwell:
- Thanks for your interest. The meter has been defined using the speed of light. As a direct result of this definition the speed of light is fixed at an exact value when expressed in m/s. There have been endless discussions on how we should present this information (dramatically complicated by a couple of editors who do not accept or understand the effect of the definition). For the majority who do accept the definition of the metre we have these options:
- Just give the figure
- Give the figure stating that it is an exact value
- Give the figure and say that it is exact due to the definition of the meter (current wording)
- Give the figure with a more detailed explanation as to why it is exact.
- What do you suggest? Martin Hogbin (talk) 23:14, 29 August 2009 (UTC)
- Martin Hogbin, this list of options leaves out the subject under discussion, namely: putting an approximate value first, and filling in the exact value later, so as to avoid a startling and (at first glance) solipsist statement of the defined exact value. Brews ohare (talk) 23:35, 29 August 2009 (UTC)
- One doesn't have to agree that the exact value is startling or solipsist to be in favor of starting with the approximate value. We did that long before the 1983 change, too, you know, like in the 1963 Feynman lectures on physics. Using an approximation is in no way a denial of the true value, nor have we heard from anyone who can credibly be interpreted as outside "the majority who do accept the definition of the metre". Dicklyon (talk) 23:41, 29 August 2009 (UTC)
- That is true. Earlier on the talk page is a google search link that shows a ton of sources that begin with an approximate value. Some never provide the exact value at all. Brews ohare (talk) 23:46, 29 August 2009 (UTC)
- Many books may use the approximate value, because it is convenient and makes calculations simple, not because they think their readers will find the number 299,792,458 harder to understand than the number 300,000,000. This is an article about the speed of light. Many of our readers will want to know what the speed of light is, and there is no reason not to tell them. Martin Hogbin (talk) 23:49, 29 August 2009 (UTC)
- You'll get no argument there; also many want an approximate value they can remember and use, and there's no reason not to tell them that, too; and first, like many books do. Or is there a reason? Dicklyon (talk) 23:56, 29 August 2009 (UTC)
- We've already got spacetime and gravitational waves up there in the lead, and yet there is a desire to make the actual value of the speed of light simpler! Erm, who are we writing this article for? Physchim62 (talk) 00:06, 30 August 2009 (UTC)
- It's not clear what you're suggesting; can you state your position on the topic in the section above? Dicklyon (talk) 00:33, 30 August 2009 (UTC)
- It is perfectly clear what Physchim62 is suggesting; that we keep the exact number because it is really not that hard to understand. Martin Hogbin (talk) 11:42, 30 August 2009 (UTC)
- It's not clear what you're suggesting; can you state your position on the topic in the section above? Dicklyon (talk) 00:33, 30 August 2009 (UTC)
- One doesn't have to agree that the exact value is startling or solipsist to be in favor of starting with the approximate value. We did that long before the 1983 change, too, you know, like in the 1963 Feynman lectures on physics. Using an approximation is in no way a denial of the true value, nor have we heard from anyone who can credibly be interpreted as outside "the majority who do accept the definition of the metre". Dicklyon (talk) 23:41, 29 August 2009 (UTC)
- Martin Hogbin, this list of options leaves out the subject under discussion, namely: putting an approximate value first, and filling in the exact value later, so as to avoid a startling and (at first glance) solipsist statement of the defined exact value. Brews ohare (talk) 23:35, 29 August 2009 (UTC)
- Thanks for your interest. The meter has been defined using the speed of light. As a direct result of this definition the speed of light is fixed at an exact value when expressed in m/s. There have been endless discussions on how we should present this information (dramatically complicated by a couple of editors who do not accept or understand the effect of the definition). For the majority who do accept the definition of the metre we have these options:
Physchim62: Um, were we discussing these topics?? Or, perhaps you are proposing, like these topics, a link to a separate article Speed of light (1983 definition)? Brews ohare (talk) 00:18, 30 August 2009 (UTC)
- Heh... honestly, I can barely tell what the point of contention is. The only thing I see wrong with the intro is that it includes the definition of a meter, which belongs in the meter article, not here. If I were feeling sufficiently bold, I'd rewrite the intro as follows--
- The speed of light is a fundamental physical constant, the speed at which light and all other electromagnetic radiation travels in a vacuum. It is usually denoted in physics by the letter c. The speed of light is precisely 299,792,458 metres per second, though it is commonly approximated as either 300,000 kilometers per second or 186,000 miles per second.
- Yeah, it's kind of heavy on links, but this is a scientific definition after all. Clayhalliwell (talk) 01:20, 30 August 2009 (UTC)
- I think that many editors here would be happy with that but for some reason that I have never been able to divine, Brews strongly objects to stating the exact value first and Dicklyon and Abtract have some lesser objection to doing this. Eight other editors have given their support with stating the exact value first. There still would be some polite discussion as to which of the options I have stated above we should use but I do not think that there are any strong feelings in that respect. If Brews goes off to set up his own article, the test of us could get on with improving this one by cooperation and consensus. Martin Hogbin (talk) 09:19, 30 August 2009 (UTC)
- Martin has chosen to misinterpret my actions as "setting up a separate article" and planning to "go off". My objectives were clearly stated in my opening remarks upon creating the article that appear below.
I've introduced a new article Speed of light (1983 definition) which I hope will have two effects: first, it presents a very clear statement of the situation, and second, it may draw the venom expressed on this page away to that one where hopefully the greater detail will introduce a real discussion of sources and contents to replace harangue and hectoring. Brews ohare (talk) 01:33, 30 August 2009 (UTC)
- Ummm... shouldn't that article be Metre (1983 definition)? It's the length of the meter that's changed, not the speed of light. The speed of light is kind of a, wossname, universal physical constant. The last time it changed was sometime around the Big Bang, not 1983. Clayhalliwell (talk) 01:42, 30 August 2009 (UTC)
Clayhalliwell: It is as you say that the definition of the metre changed, but that in turn changed the role of the speed of light from a measured value of a constant of nature to a defined exact conversion factor, whose only relation to the actual speed of light is historical accident. (In the SI system of units, that is, not in nature proper.) If the 1983 committee convened a century ago, the defined speed of light might be 300,000,000 m/s today. Brews ohare (talk) 02:23, 30 August 2009 (UTC)
- So after an extended period of tendentious editing during which Brews ohare came up on the short side of consensus, his answer is to create a content fork. That's a rather obvious candidate for a deletion discussion and I'd be surprised not to see it there shortly. Tim Shuba (talk) 03:20, 30 August 2009 (UTC)
- It seems bizarre to me, given that the discussion here hasn't been about whether any of that material would be acceptable here – almost all the talk has been about the lead. Has he had a problem getting material into the article other than in the lead? Dicklyon (talk) 04:34, 30 August 2009 (UTC)
- This material in Speed of light (1983 definition), which is a rewrite of material in the "Speed of light by definition" section, has so far not proved contentious (never mind the incorrect claim by Tim Shuba that it "came up on the short side of consensus"). However, I do not think the editors battling over a short summary for the intro have digested this material, so I hope creation of this article will bring it to their attention, and that understanding of the issues will replace hectoring and harangue. Brews ohare (talk) 06:18, 30 August 2009 (UTC)
- Before a deletion (or a merge) discussion occurs, it would be nice to have a hiatus during which we might see how or whether matters settle. As said earlier, it may be that the longer and more complete discussion of the situation in Speed of light (1983 definition) might lead to a more calm and accurate assessment of the very much shorter version to be put into the lead. For example, it provides a basic understanding for why the lead proposed by Abstract is preferable to the present lead. In any event Tim Shuba is on record as saying: “Primarily, I use wikipedia for enjoyment rather than attempt to edit seriously. Since I am aware of how and why so much blatantly bogus information gets into articles, and why a large number of articles are highly unreliable, it doesn't affect me adversely as a user. Therefore, whether the speed of light article gets better or gets worse isn't too important to me.″ so he should have no difficulty putting his plans on hold. Brews ohare (talk) 05:25, 30 August 2009 (UTC)
I think your article is an excellent idea, Brews. Here is the deal, you stick to editing your own article and leave this one alone and I will agree not to nominate yours for deletion. I cannot speak for others, however. Martin Hogbin (talk) 09:22, 30 August 2009 (UTC)
- I have an even better idea ... we all discuss content in a way that will produce an article helpful to readers of all 'standards', consistent with guidelines (in the current context wp:lead) would be a good one to look at), well sourced (and consistent with those sources), and formulated in such a way that brings to an end this unseemly arguement. ownership, name calling and veiled insults have no place in this debate. Abtract (talk) 10:05, 30 August 2009 (UTC)
- I would agree with you if it were not for the fact that that was exactly what we were trying to do before you decided to rewrite the lead. As I have already said, the current lead is not perfect (neither was it written by me) and I am happy to discuss ways of improving it by incremental changes. The one thing we must draw a line under is the consensus to show the exact speed of light in m/s as the first numerical value and in the first paragraph. If we can stop the endless argument about that point then I am all for it, are you? Martin Hogbin (talk) 11:36, 30 August 2009 (UTC)
- If I recollect, the marginally re-written lead that I put in a couple of days ago that has been reverted out had just that ... not my ideal because I favour using 300 first to help readers not because I have a hangup about it. I left out the word 'exact' in the first para but included it in the second after due explanation and context building. My slightly rewritten lead was designed to be a compromise between Hogbin and ohare that should (I thought) satisfy you both ... so far ohare has agreed it but Hogbin has simply dismissed it as unencyclopedic with no detail as to what needs changing despite many requests to provide such. Please look again at my proposed lead and tell me what is wrong with it. Forget your entrenched position and look at it from the point of view of an average reader.Abtract (talk) 11:54, 30 August 2009 (UTC)
- First you say let us stop arguing and get on with improving the article and when I agree to do this the first thing you do is start arguing about the original topic. In what way is the exact figure a problem for the average reader? Martin Hogbin (talk) 12:28, 30 August 2009 (UTC)
Dicklyon's efforts above have established support for the approach taken by Abtract. This whole matter could be settled at once by acceptance of Abtract's lead here, to which you have provided no detailed objection, but only harangue. Brews ohare (talk) 12:46, 30 August 2009 (UTC)
New lead ... further refined
I have made two edits to the lead; please look at them separately. 1) I have moved the first part of para 2 into the start of para 3 and compressed paras 3 and 4 into one; this is to keep all history together and to keep all usage/importance together ... no content was changed in this edit. 2) I have added content to the history para (not as much as I would like but we can discuss adding more when we have agreed the format) in order to make the struggle (for an accurate measurement) clearer and to clarify/expand the explanation of the 1983 decision which after all was quite important. You will see that I have left the first para unchanged though I still favour change ... when discussions above have concluded maybe change will come, maybe not. I have made these edits because the only objections to my full re-write seem to concern the use of 300 in the first para. I hope this improved and slightly expanded lead will enable editors to see the first para in context and perhaps we can move forward to agree a compromise that will satisfy us all and help the reader. Abtract (talk) 13:38, 30 August 2009 (UTC)
- I still agree with this introduction of yours. You did not reinstate the missing gravitational wave reference. Brews ohare (talk) 14:27, 30 August 2009 (UTC)
- Sorry could u do it pls. Abtract (talk) 15:11, 30 August 2009 (UTC)
- Done. Brews ohare (talk) 15:24, 30 August 2009 (UTC)
- I'm not a fan of either of those two edits. The second adds too much detail to the lead. The first I think makes it less logical than it was before. A better fix would be to just remove the sentence "Exceptions are when precise time measurements or very long distances are involved," thereby letting the sentence before it lead to the sentence after it better. Mixing this sentence with the actual importance of c in spacetime makes a mess and a nonsequitur, I think. Dicklyon (talk) 16:39, 30 August 2009 (UTC)
- I would be happy if you made that edit; I have never thought that sentence worthy of the lead. Abtract (talk) 17:05, 30 August 2009 (UTC)
- Done. It wasn't correct, anyway, since we routinely use delta-t measurements well below a nanosecond to resolve range in time-of-flight rangefinders down to cm and less. And even when we're not measuring time, we need it to design antennas and such. Dicklyon (talk) 17:24, 30 August 2009 (UTC)
- You took it far further than I had thought you were suggesting ... you also removed the useful extra content I had added as well as removing the sentence in question - I guess I didn't notice the word "just" in your suggestion. I am going to put it back, hopefully without starting another war, as it adds considerably to the ease of understanding 1983 imho. Abtract (talk)
- Done. It wasn't correct, anyway, since we routinely use delta-t measurements well below a nanosecond to resolve range in time-of-flight rangefinders down to cm and less. And even when we're not measuring time, we need it to design antennas and such. Dicklyon (talk) 17:24, 30 August 2009 (UTC)
- I would be happy if you made that edit; I have never thought that sentence worthy of the lead. Abtract (talk) 17:05, 30 August 2009 (UTC)
I attempted to put the image before the table, but couldn't get the formatting to work. I think the article would look much nicer if it started with the picture. Dicklyon (talk) 17:29, 30 August 2009 (UTC)
Finell has made some good improvements to the lead. So far, there seems to be little opposition to also doing the change to start with the approximate value (that, the few who are against that idea have so far declined to start a position to explain why). Dicklyon (talk) 20:28, 30 August 2009 (UTC)
- Removing the history and emphasising relativity is surely a backward step and most certainly is not an improvement. I am giving up until sanity returns. Abtract (talk) 23:06, 30 August 2009 (UTC)
- Dear Abtract: Please don't assume, or charge, that everyone who disagrees with your very substantial rewrite of the lead is insane. I did not have a problem when there was a little bit of history in the lead, but your last version introduced too much redundancy; a chronology of various estimates or measurements of c is too much detail for a lead section. The following sentence was always problematic: "Throughout much of human history, whether light traveled at infinite speed, or simply very quickly, was unknown." Infinity was not a well developed concept throughout most of the undefined historical (or pre-historical) period to which that sentence referred, and "infinite speed" is better described as "instantaneous", but the subject can be better treated in the history section than in the lead. Relativity was always a main subject of the lead, but without mentioning it by name; I added the name. The following sentences made assertions that are head-scratchers to anyone who doesn't already understand the topic fully (that is, the general reader): "For technical reasons in 1983, the metre was redefined using this value as a conversion factor. This had the effect of 'fixing' c at exactly 299,792,458 metres per second in the International System of Units." Thank you for your contributions to this article; I hope that you will continue to try to improve the article. —Finell (Talk) 04:17, 31 August 2009 (UTC)
- I too am puzzled by Abtract's outburst about "sanity"; and the concept of it returning presumes that it was once here, so one has to wonder what part of recent history he figures that was. Anyway, Abtract, I'd be interested in understanding your POV is you're up to it. Personally, I think that the role of the speed of light in spacetime and relativity is the main reason why it's an important concept, and that ought to be in the lead. I like history section, but don't like to see so much of it in the lead. Dicklyon (talk) 05:00, 31 August 2009 (UTC)
- Abstract's words "For technical reasons in 1983, the metre was redefined using this value as a conversion factor. This had the effect of 'fixing' c at exactly 299,792,458 metres per second in the International System of Units." were what I liked most about his proposed intro, and IMO is preferable to the present intro, which at best is ambiguous and more probably misleading. Brews ohare (talk) 05:04, 31 August 2009 (UTC)
- I don't believe that's what he was referring to in his sanity comment, but please can you quote the part of the present lead that you think is ambiguous or misleading? Dicklyon (talk) 05:32, 31 August 2009 (UTC)
Hi Dick: I'm surprised you ask. The main issue is that the discussion of the redefinition of the metre and its implied redefinition of the speed of light is complex, and simply stating that c has the exact value of 299,792,458 m/s is misleading because the reader is likely to take the same view as centuries of history prior to 1983, namely, the reader will take it that this new SI units c refers to the measurable speed of light that underlies EM and relativity. That is not so, and that is what the entire argument with Martin and his associates has been about.
From your question, I take it that either you have not been following things here at all, or perhaps you don't see that the changed definition of the metre also changed the meaning of c within the SI units. (Of course, the concept of c in general physics is not affected by what happens in the SI units.) All this is discussed very exactly in the section on "Speed of light by definition" that you just finished editing. I'd guess that you edited for style, but did not absorb its content, eh? You and ten other people.
So there is the issue, not acknowledged and not discussed despite what I consider amazingly patient attempts to get the issue out in view in the face of dramatic violation of WP protocol by the "exact-value fanatics" in innumerable ways. I take it that nothing will be done here.
Martin's formulation is now back just as it was at the outset. The notion you advanced, that the combination of an "exact value" and a seemingly solipsist accompanying definition of the metre were a lot for the reader to swallow in one sentence, now has been dropped altogether, without argument or resistance. Abstract's attempts to make it right have been walked over.
As Brew-ohare's corollary to Peter Jackson's law Number 275 says: "Where a preponderance of editors share a common view, no amount of contrary sources or opposing logic will affect the WP article."
When the idea of FA status rises later on, I expect all this to resurface, probably with no more civilized or reasonable reception. It is my hope (if not my expectation) that when the FA review is made, the "exact value fanatics" will be seen for what they are, and will be sent to hard labor camp. Brews ohare (talk) 06:07, 31 August 2009 (UTC)
- Quite frankly, I'm surprised I asked, too. It seems sometimes that I never learn. I'll take your answer to mean that you believe that "the metre is defined so that c has the exact value of 299,792,458 metres per second" is ambiguous or misleading. Dicklyon (talk) 06:31, 31 August 2009 (UTC)
Hi Dick: Remember this? Whatever happened to this idea? As for what I think? I think the 1983 redefinition of the metre accompanies a 1983 redefinition of the speed of light to place it beyond measurement, and simply stating that “c = 299,792,458 m/s exactly by definition of the metre” hardly constitutes an understandable presentation, particularly as the 1983 c is not the real, physical c that was measured circa 1972 to obtain the number 299,792,458 m/s. Abstract's intro made this clear. Maybe WP could draft language for sub prime mortgages too? Brews ohare (talk) 15:03, 31 August 2009 (UTC)
- I believe I asked you to show a source to support your POV that "the 1983 c is not the real, physical c that was measured circa 1972". I don't argue with the sources you've shown us, but if they say that, I've missed it, so maybe you can provide a quote along those lines? Dicklyon (talk) 15:30, 31 August 2009 (UTC)
- Well, the imprecision of language is hard at work here. The 1960 definition of the metre is cited. It is in terms of wavelength. I'd guess that you'd agree that with this old definition it was found by measurement (counting of fringes and dividing by measured time) that c = 299,792,458 m/s, approximately. I'm sure you'd agree as well that post-1983 a conversion factor is defined of 299,792,458 m/s, which is used to convert times-of-transit to lengths. That is well sourced as well. So the issue seems to be, is the c that can be measured the same thing as the conversion factor that is exact and cannot be measured? How say you to this formulation? Brews ohare (talk) 16:07, 31 August 2009 (UTC)
- The problem here is finding a source that uses the term speed of light so carefully. Although the distinctions above are made, and the differences between a conversion factor and the earlier speed of light is sourced already, I don't know if a source can be found that says simply "a conversion factor is not the same thing as the real, physical speed of light". Brews ohare (talk) 16:20, 31 August 2009 (UTC)
- Does an example help? If the real speed of light increases as the universe evolves, say, the metre will lengthen because it is based upon a fixed time of 1/299,792,458 s. If the separation between A and B is given,the greater speed of light means light gets from A to B sooner. But in SI units the longer metre means the distance from A to B is fewer metres. Thus, the speed of light in SI units hasn't changed (it's still 299,792,458 m/s) but it is the case that the light takes less time to transit, because A & B are fewer metres apart. Brews ohare (talk) 16:44, 31 August 2009 (UTC)
- As for putting the approximation in the lead paragraph, I was hoping to hear some arguments against it first, before deciding; but if Martin and others aren't going to state their positions, maybe we should go ahead. Dicklyon (talk) 15:32, 31 August 2009 (UTC)
- I think everyone else has given up the will to live but please remember there was a strong consensus not to do this. Martin Hogbin (talk) 21:53, 31 August 2009 (UTC)
Real physical versus conversion factor
- These changes still do not implement the formulation of Abstract's lead, and in my opinion, the present WP lead sloughs over the change in the meaning of c that accompanied the change in definition of the metre, as very clearly described in Speed of light (1983 definition).
- For those unwilling to consult that article, here is a summary: The change in definition of the metre made c a mere conversion factor within the SI system of units (a very well-sourced statement), reducing c in the SI units to a mere matter of definition. Actual measurement of the real, physical, speed of light is no longer do-able within the SI units and requires introduction of a unit of length different than the metre (e.g. a wavelength of some transition), inasmuch as the metre simply expands or contracts to maintain the defined value of c. If your metre adjusts to maintain your c, changes in c due to measurement improvements become undetectable using the metre by itself (another well-sourced statement). Brews ohare (talk) 17:41, 30 August 2009 (UTC)
- I think we have a pretty good consensus that none of that needs to be addressed in the lead. Why don't you work on putting it into an appropriate section, and get rid of your content fork? Dicklyon (talk) 17:48, 30 August 2009 (UTC)
Well, I can simply replace the existing section. That done, inasmuch as no-one seems to get the point, the lead will be readily interpreted as in contradiction with the article. C'est la vie, I guess. Abstract's lead gets the point across correctly without going into undue detail. Brews ohare (talk) 17:53, 30 August 2009 (UTC)
- I wouldn't do that. The existing section is probably close, and the new article is huge, which would give your obsession undue weight. Can't you fix the existing section? What's wrong about it at present? Dicklyon (talk) 20:28, 30 August 2009 (UTC)
- Hi Dick: Well, I thought that was your advice, so now it is done. I think what is said in the subsection has to be said. Maybe it could be said better or more briefly. However, some length can be attributed to CYA and adding sources to that end. Also, so far as I can tell, nobody has read it, probably a good thing, as nobody appears likely to take the time to understand the subject or read the sources. Otherwise, the conflict over the lead would have been settled long ago. Brews ohare (talk) 20:33, 30 August 2009 (UTC)
- I toned it down a bit. I didn't see a source supporting your idea that there's a "real, physical" speed of light that's different from what everyone else calls the speed of light, which was part of what seems to frame your POV and your writing. I have no objection to the notions of "conversion factor" and "real, physical"; it's just that if we introduce such notions they need to be sourced; yes, the actual terminology, esp. if emphasized in the article, needs to be sourced. Dicklyon (talk) 21:44, 30 August 2009 (UTC)
- Hi Dick: The real physical speed of light is the speed of light that was measured pre 1983 to obtain the measured estimate 299,792,458 m/s. Now (post 1983) that the metre adjusts to force a conversion factor between transit time and length of 299,792,458 m/s, within the SI system this conversion factor is fixed, and not measurable. I believe all these points to be tied down by multiple published sources, a subset of which is found in the WP article here. Do you? Brews ohare (talk) 15:27, 31 August 2009 (UTC)
- Brews: You've just put your finger on the nub of the problem, if there is one. Please show us when the length of the metre fluctuated since the 1983 redefinition due to a change in the physical speed of light. I believe that your statement reveals the source of your misunderstanding. The speed of light was chosen as the standard of measure because it is constant in fact (at least that was one of the reasons); it is not constant because it is the standard, notwithstanding the definition. We have a very good theory, which is consistent and well confirmed by experiment, that tells us that the speed of light is constant. Further, extensive measurements of high accuracy confirm that the speed of light is constant. As has been pointed out to you several times before, the issue would be the same with any standard of measure.
- If the metre were defined in terms of the wavelength of a particular atomic transition, then the length of the metre would fluctuate with the wavelength (if the wavelength fluctuated) and the wavelength would become unmeasurable in the standard unit.
- If the metre were defined in terms of the length of a particular metal bar in a particular vault, then the length of the metre would fluctuate with the bar (if the bar's length fluctuated) and the bar would become unmeasurable in the standard unit.
- Please try to understand this once and for all. If you cannot show us an instance when the length of the metre fluctuated due to a change in the physical speed of light, please drop this issue and stop repeating the same argument that you have been repeating over and over and over again. If you can't drop the issue, then find a more receptive audience elsewhere. It isn't fair to you to keep banging your head against a wall, and it isn't fair to the rest of us to be battered by you. Thank you. —Finell (Talk) 17:12, 31 August 2009 (UTC)
- Brews: You've just put your finger on the nub of the problem, if there is one. Please show us when the length of the metre fluctuated since the 1983 redefinition due to a change in the physical speed of light. I believe that your statement reveals the source of your misunderstanding. The speed of light was chosen as the standard of measure because it is constant in fact (at least that was one of the reasons); it is not constant because it is the standard, notwithstanding the definition. We have a very good theory, which is consistent and well confirmed by experiment, that tells us that the speed of light is constant. Further, extensive measurements of high accuracy confirm that the speed of light is constant. As has been pointed out to you several times before, the issue would be the same with any standard of measure.
Finell: Your impatience is born of frustration in understanding the issues, not in my behavior beyond a lack of eloquence. I have tried several different approaches: mathematical equations, cited sources, logic. Most recently I have tried this example to distinguish between the real speed of light and the conversion factor; please have the patience to let me know if this example makes sense to you. I'll review it below:
- Take two points A & B. If the real speed of light increases as the universe evolves, say, the metre will lengthen because it is based upon a fixed time of 1/299,792,458 s. (The metre is the distance traveled by the real speed of light in 1/299,792,458 s.) If the separation between A and B is fixed, the greater speed of light means light gets from A to B sooner. But in SI units the longer metre means the distance from A to B is fewer metres. Thus, the speed of light in SI units hasn't changed (it's still the conversion factor of 299,792,458 m/s) but it is the case still that the light takes less time to transit, because A & B are fewer metres apart.
This example shows (to me at least) that the real speed of light (for example the number of wavelengths traveled per second) is different form the conversion factor of 299,792,458 m/s. The real speed of light can change (in principle), the conversion factor is defined and lies outside measurement, and is not a property of nature.
I hope you will take the time to explain to me whether you have any difficulties with using this example to illustrate that there are two different conceptions involved here: the real speed of light (which can be measured in wavelengths/s), and a fixed conversion factor in the SI units. Brews ohare (talk) 20:03, 31 August 2009 (UTC)
- Brews: I think that I have a decent grasp on the issue, actually, and I understand what you are saying (I understood it the first time I read it several reiterations ago). I don't accept your premise that it is reasonable to expect that "the real speed of light increases as the universe evolves". I am not prepared to assume something that is contrary to both well established physics and all reliable measurements of the speed of light. Likewise, as I said before (to Tombe or you), if the real speed of light were to surprise us all and change, the consequence would be immediate re-definition of the meter would upon a different, more stable standard; the worlds' standards organizations would not, as you and Tombe assume, simply accept a changed real metre. Now, please answer my question: Has the length of the metre changed since the 1983 redefinition due to a change in the physical speed of light? Yes or no, please. If yes, please cite a reliable source. —Finell (Talk) 20:50, 31 August 2009 (UTC)
- PS: At a deeper level, I suspect that a change in the real c would be undetectable by any means (or, equivalently, that it is meaningless to talk about a change in the real c) because c is the thread from which spacetime is woven. But that is not part of my objection to the Tombe-ohare thesis. —Finell (Talk) 20:50, 31 August 2009 (UTC)
- If I recall correctly, only certain dimensionless parameters like the fine structure constant are directly detectable. In any case, the value of the meter is continually checked against other standards by people who know a lot more about this then we do. If the assumptions that Brews is worrying about turns out to be incorrect in any way it would be BIG news and everyone would know about it. The fact that the meter is defined using a defined value for c makes it MORE likely, not less that any variance of c with time or location, if it exists, will be detected. TStein (talk) 21:11, 31 August 2009 (UTC)
Finell, TStein you amaze me that you are off discussing whether the speed of light does change, can be observed to change, blah, blah, blah. The example is entirely hypothetical and it isn't necessary that it actually happen. The point is that if it happened it illustrates the difference between the real speed of light and a conversion factor. It is an exercise of illustration, for Pete's sake, not a physics theory, not a study of what BIPM might do if it happened, and not a question of assumptions about the real universe. Brews ohare (talk) 21:45, 31 August 2009 (UTC)
Finell, I also am amazed that you connect me to "Tombe-ohare thesis" whatever you think that is. There is no such thing. Wake up please. Brews ohare (talk) 21:45, 31 August 2009 (UTC)
In any event, to your great relief (and mine) I wish to discuss this matter with you all no longer. Brews ohare (talk) 21:45, 31 August 2009 (UTC)
- Brews, please stop putting your nonsense about this subject in the article. Martin Hogbin (talk) 22:10, 31 August 2009 (UTC)
- Martin: I have put absolutely no nonsense in the article. If you don't like this section, plese indicate why. Brews ohare (talk) 22:51, 31 August 2009 (UTC)
- Uzan, J-P; Leclercq, B (2008). The Natural Laws of the Universe: Understanding Fundamental Constants. Springer. pp. 43–44. ISBN 0387734546.
- Greene, G (2003). The Elegant Universe. WW Norton & Co. pp. 55–56. ISBN 0393058581.
- Davies, PCW (1979). The Forces of Nature. Cambridge University Press. pp. 127–128. ISBN 052122523X.
- Duke, PJ (2000). "Electromagnetic waves in free space – no electric charges or currents". Synchrotron Radiation: Production and Properties. Oxford University Press. p. 53. ISBN 0198517580.
-
Schwinger, JS (2002) . "Gravitational waves". Einstein's Legacy: The Unity of Space and Time (Reprint ed.). Courier Dover. p. 223. ISBN 0486419746.
{{cite book}}
: External link in
(help); Unknown parameter|chapterurl=
|chapterurl=
ignored (|chapter-url=
suggested) (help) - Smolin, L (2007). The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. Houghton Mifflin Harcourt. p. 215. ISBN 061891868X.
- Cite error: The named reference
Boyes
was invoked but never defined (see the help page).