Misplaced Pages

Googol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Mark Arsten (talk | contribs) at 18:09, 23 March 2012 (clean up, typos fixed: i.e, → i.e., using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 18:09, 23 March 2012 by Mark Arsten (talk | contribs) (clean up, typos fixed: i.e, → i.e., using AWB)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Two other uses A googol is the large number 10, that is, the digit 1 followed by 100 zeros:

10,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000.

The term was coined in 1938 by 9-year-old Milton Sirotta, nephew of American mathematician Edward Kasner. Kasner popularized the concept in his 1940 book Mathematics and the Imagination.

Other names for googol include ten duotrigintillion on the short scale, ten thousand sexdecillion on the long scale, or ten sexdecilliard on the Peletier long scale.

A googol has no particular significance in mathematics, but is useful when comparing with other very large quantities such as the number of subatomic particles in the visible universe or the number of hypothetically possible chess moves. Edward Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics.

A googol is approximately 70! (factorial of 70). In the binary numeral system, one would need 333 bits to represent a googol, i.e., 1 googol ≈ 2, or exactly 2 ( 100 / l o g 10 2 ) {\displaystyle 2^{(100/\mathrm {log} _{10}2)}} .

See also

References

Notes
  1. Kasner, Edward and Newman, James R. (1940). Mathematics and the Imagination. Simon and Schuster, New York. ISBN 0486417034.{{cite book}}: CS1 maint: multiple names: authors list (link)

External links

Large numbers
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Categories: