Misplaced Pages

Deterministic context-free language

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Nbarth (talk | contribs) at 13:53, 19 August 2013 (Description: direct link). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 13:53, 19 August 2013 by Nbarth (talk | contribs) (Description: direct link)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In formal language theory, deterministic context-free languages (DCFL) are a proper subset of context-free languages. They are the context-free languages that can be accepted by a deterministic pushdown automaton.

Description

The notion of the DCFL is closely related to the deterministic pushdown automaton (DPDA). It is where the language power of a pushdown automaton is reduced if we make it deterministic; the pushdown automaton becomes unable to choose between different state transition alternatives and as a consequence cannot recognize all context-free languages. Unambiguous grammars do not always generate a DCFL. For example, the language of even-length palindromes on the alphabet of 0 and 1 has the unambiguous context-free grammar S → 0S0 | 1S1 | ε. An arbitrary string of this language cannot be parsed without reading all its letters first which means that a pushdown automaton has to try alternative state transitions to accommodate for the different possible lengths of a semi-parsed string.

Properties

Deterministic context-free languages can be recognized by a deterministic Turing machine in polynomial time and O(log n) space; as a corollary, DCFL is a subset of the complexity class SC. The set of deterministic context-free languages is not closed under union but is closed under complement.

Importance

The languages of this class have great practical importance in computer science as they can be parsed much more efficienly than nondeterministic context-free languages. The complexity of the program and execution time of a deterministic pushdown automaton is vastly less than that of a nondeterministic one. In the naive implementation, the latter must make copies of the stack every time a nondeterministic step occurs. The best known algorithm to test membership in any context-free language is Valiant's algorithm, taking O(n) time, where n is the length of the string. On the other hand, deterministic context-free languages can be accepted in O(n) time by a LR(k) parser. This is very important for computer language translation because many computer languages belong to this class of languages.

See also

References

  1. Hopcroft, John (1979). Introduction to automata theory, languages, and computation. Addison-Wesley. p. 233. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. Hopcroft, John (2001). Introduction to automata theory, languages, and computation 2nd edition. Addison-Wesley. pp. 249–253. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. S. A. Cook. Deterministic CFL's are accepted simultaneously in polynomial time and log squared space. Proceedings of ACM STOC'79, pp. 338–345. 1979.
  4. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0019-9958(65)90426-2, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/S0019-9958(65)90426-2 instead.
Automata theory: formal languages and formal grammars
Chomsky hierarchyGrammarsLanguagesAbstract machines
  • Type-0
  • Type-1
  • Type-2
  • Type-3
Each category of languages, except those marked by a , is a proper subset of the category directly above it. Any language in each category is generated by a grammar and by an automaton in the category in the same line.
Category: