This is an old revision of this page, as edited by Jytdog (talk | contribs) at 00:18, 6 November 2016 (Undid revision 748039978 by 2607:FEA8:2CA0:251:39D9:1394:7E43:7F68 (talk) see talk page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 00:18, 6 November 2016 by Jytdog (talk | contribs) (Undid revision 748039978 by 2607:FEA8:2CA0:251:39D9:1394:7E43:7F68 (talk) see talk page)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Psychobiotics are defined by Dinan et al. as those living organisms that on sufficient ingestion produces a health benefit in those patients with psychiatric, or neurological, illnesses. As of 2016, research was underway to better understand the impact of psychobiotics on the gut–brain axis, enteric nervous system, and oral-microbiome. Research suggests modulation of neuroimmunologic, neuroinflammatory, neurohormonal, and gasotransmitter, systems. Other possible mechanisms identified include modulation of the hypothalamic–pituitary–adrenal axis, vagus nerve, microglia, myelination, and neuronal gene expression.
A systematic review from 2016 examined the preclinical and small human trials that have been conducted with certain commercially available strains of probiotic bacteria and found that among those tested, Bifidobacterium and Lactobacillus genera (B. longum, B. breve, B. infantis, L. helveticus, L. rhamnosus, L. plantarum, and L. casei), had the most potential to be useful for certain central nervous system disorders.
See also
2References
- Dinan TG, Stanton C, Cryan JF (2013). "Psychobiotics: a novel class of psychotropic". Biol Psychiatry. 74 (10): 720–6. doi:10.1016/j.biopsych.2013.05.001. PMID 23759244.
- Zhou L, Foster JA (2015). "Psychobiotics and the gut-brain axis: in the pursuit of happiness". Neuropsychiatr Dis Treat. 11: 715–23. doi:10.2147/NDT.S61997. PMC 4370913. PMID 25834446.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Gnanavel S (2015). "Psychobiotics: the latest psychotropics". Indian J Psychol Med. 37 (1): 110. doi:10.4103/0253-7176.150862. PMC 4341301. PMID 25722529.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Evrensel A, Ceylan ME (2015). "The Gut-Brain Axis: The Missing Link in Depression". Clin Psychopharmacol Neurosci. 13 (3): 239–244. doi:10.9758/cpn.2015.13.3.239. PMC 4662178. PMID 26598580.
- Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015). "Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders". Front Cell Neurosci. 9: 392. doi:10.3389/fncel.2015.00392. PMC 4604320. PMID 26528128.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Smythies LE, Smythies JR (2014). "Microbiota, the immune system, black moods and the brain-melancholia updated". Front Hum Neurosci. 8: 720. doi:10.3389/fnhum.2014.00720. PMC 4163975. PMID 25309394.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Selhub EM, Logan AC, Bested AC (2014). "Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry". J Physiol Anthropol. 33: 2. doi:10.1186/1880-6805-33-2. PMC 3904694. PMID 24422720.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Wang H, Lee IS, Braun C, Enck P (July 2016). "Effect of probiotics on central nervous system functions in animals and humans - a systematic review". J. Neurogastroenterol Motil. doi:10.5056/jnm16018. PMID 27413138.
We reviewed the effect of probiotics on the central nervous system in randomized controlled trials in animals and humans, and analyzed the possibility of translating animal models to human studies because few human studies have been conducted to date. According to the qualitative analyses of current studies, we can provisionally draw the conclusion that B. longum, B. breve, B. infantis, L. helveticus, L. rhamnosus, L. plantarum, and L. casei were most effective in improving CNS function, including psychiatric disease-associated functions (anxiety, depression, mood, stress response) and memory abilities.
- Noble JM, Scarmeas N, Papapanou PN (2013). "Poor oral health as a chronic, potentially modifiable dementia risk factor: review of the literature". Curr Neurol Neurosci Rep. 13 (10): 384. doi:10.1007/s11910-013-0384-x. PMID 23963608.
- Oleskin AV, Shenderov BA (2016). "Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota". Microb Ecol Health Dis. 27: 30971. doi:10.3402/mehd.v27.30971. PMC 4937721. PMID 27389418.
- Hoban AE; Stilling RM; Ryan FJ; Shanahan F; Dinan TG; Claesson MJ; et al. (2016). "Regulation of prefrontal cortex myelination by the microbiota". Transl Psychiatry. 6: e774. doi:10.1038/tp.2016.42. PMC 4872400. PMID 27045844.