Misplaced Pages

Potting (electronics)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by DeStrickland (talk | contribs) at 10:54, 30 March 2017 (Addition of link to another Wiki page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 10:54, 30 March 2017 by DeStrickland (talk | contribs) (Addition of link to another Wiki page)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Potting" electronics – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message)
A small transformer potted in epoxy. The surface visible on the right is formed by the potting compound that has been poured into the plastic box

In electronics, potting is a process of filling a complete electronic assembly with a solid or gelatinous compound for resistance to shock and vibration, and for exclusion of moisture and corrosive agents. Thermosetting plastics or silicone rubber gels are often used. Many sites recommend using silicone or epoxy to protect from impact and loose wires. Araldite (a brand name) potting compound has been suggested for certain automotive applications.

Most circuit board assembly houses coat assemblies with a layer of transparent conformal coating rather than potting. Conformal coating gives most of the benefits of potting, and is lighter and easier to inspect, test, and repair.

When potting a circuit board that uses surface-mount technology, low glass transition temperature (Tg) potting compounds such as polyurethane or silicone are used, because high Tg potting compounds may break solder bonds as they harden and shrink at low temperatures.

See also

References

  1. Hackaday
  2. http://ww1.microchip.com/downloads/en/AppNotes/01288A.pdf
  3. http://www.pottingsolutions.com/my%20site/Technology/potting_hints.htm#Potting%20PC%20boards

External links


Stub icon

This electronics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: