Misplaced Pages

Tetracyclic antidepressant

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by AlyInWikiWonderland (talk | contribs) at 16:50, 14 August 2017 (List of TeCAs). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 16:50, 14 August 2017 by AlyInWikiWonderland (talk | contribs) (List of TeCAs)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Tetracyclic antidepressant" – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this message)
Not to be confused with Tetracycline.
Skeletal formula of tetracyclic antidepressant mirtazapine. Note its four fused "rings".

Tetracyclic antidepressants (TeCAs) are a class of antidepressants that were first introduced in the 1970s. They are named after their chemical structure, which contains four rings of atoms, and are closely related to the tricyclic antidepressants (TCAs), which contain three rings of atoms.

List of TeCAs

The TeCAs include:

Drugs which contain four rings but not fused together that are sometimes classified as TeCAs include:

Benzoctamine (Tacitin) is closely related to the TeCAs and particularly to maprotiline, with the two compounds differing only in the length of their side chain, but benzoctamine is not used as an antidepressant and is instead used as an anxiolytic.

Pharmacology

See also: Pharmacology of antidepressants

Binding profiles

The affinities (Kd (nM)) of a selection of TeCAs have been compared below at an assortment of binding sites:

Compound SERT NET DAT 5-HT1A 5-HT2A α1 α2 D2 H1 mACh
Amoxapine 58 16.0 4,310 220 0.6 50 2,600 160 25 1,000
Loxapine 2,400 380 9,000 2,900 1.7 28 2,400 70 4.9 450
Maprotiline 5,800 11.1 1,000 12,000 120 91 9,400 350 2.0 560
Mianserin 4,000 101 9,400 190 4.3 74 4.3 2,197 1.7 820
Mirtazapine >100,000 1,640 >100,000 ? 69 500 19 >5,454 0.1 670
Oxaprotiline 3,900 4.9 4,340 67,000 2,400 620 42,000 ? 21 2,900

The selected ligands act as antagonists (or inverse agonists depending on the site in question) at all receptors listed and as inhibitors of all transporters listed.

See also

References

  1. Brunton, Laurence (2011). Goodman & Gilman's The Pharmacological Basis of Therapeutics 12th Edition. China: McGraw-Hill. pp. 406–410. ISBN 978-0-07-162442-8.
  2. Tatsumi M, Groshan K, Blakely RD, Richelson E (December 1997). "Pharmacological profile of antidepressants and related compounds at human monoamine transporters". European Journal of Pharmacology. 340 (2–3): 249–258. doi:10.1016/S0014-2999(97)01393-9. PMID 9537821.
  3. Wander TJ, Nelson A, Okazaki H, Richelson E (December 1986). "Antagonism by antidepressants of serotonin S1 and S2 receptors of normal human brain in vitro". European Journal of Pharmacology. 132 (2–3): 115–121. doi:10.1016/0014-2999(86)90596-0. PMID 3816971.
  4. Richelson E, Nelson A (July 1984). "Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro". The Journal of Pharmacology and Experimental Therapeutics. 230 (1): 94–102. PMID 6086881.
  5. Tatsumi M, Jansen K, Blakely RD, Richelson E (March 1999). "Pharmacological profile of neuroleptics at human monoamine transporters". European Journal of Pharmacology. 368 (2–3): 277–283. doi:10.1016/S0014-2999(99)00005-9. PMID 10193665.
  6. Wander TJ, Nelson A, Okazaki H, Richelson E (November 1987). "Antagonism by neuroleptics of serotonin 5-HT1A and 5-HT2 receptors of normal human brain in vitro". European Journal of Pharmacology. 143 (2): 279–282. doi:10.1016/0014-2999(87)90544-9. PMID 2891550.
  7. Richelson E, Nelson A (August 1984). "Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro". European Journal of Pharmacology. 103 (3–4): 197–204. doi:10.1016/0014-2999(84)90478-3. PMID 6149136.
  8. Fernández J, Alonso JM, Andrés JI, et al. (March 2005). "Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents". Journal of Medicinal Chemistry. 48 (6): 1709–12. doi:10.1021/jm049632c. PMID 15771415.
  9. de Boer TH, Maura G, Raiteri M, de Vos CJ, Wieringa J, Pinder RM (April 1988). "Neurochemical and autonomic pharmacological profiles of the 6-aza-analogue of mianserin, Org 3770 and its enantiomers". Neuropharmacology. 27 (4): 399–408. doi:10.1016/0028-3908(88)90149-9. PMID 3419539.
Antidepressants (N06A)
Specific reuptake inhibitors and/or receptor modulators
SSRIsTooltip Selective serotonin reuptake inhibitors
SNRIsTooltip Serotonin–norepinephrine reuptake inhibitors
NRIsTooltip Norepinephrine reuptake inhibitors
NDRIsTooltip Norepinephrine–dopamine reuptake inhibitors
NaSSAsTooltip Noradrenergic and specific serotonergic antidepressants
SARIsTooltip Serotonin antagonist and reuptake inhibitors
SMSTooltip Serotonin modulator and stimulators
Others
Tricyclic and tetracyclic antidepressants
TCAsTooltip Tricyclic antidepressants
TeCAsTooltip Tetracyclic antidepressants
Others
Monoamine oxidase inhibitors
Non-selective
MAOATooltip Monoamine oxidase A-selective
MAOBTooltip Monoamine oxidase B-selective
Adjunctive therapies
Miscellaneous
Pharmacodynamics
Acetylcholine receptor modulators
Muscarinic acetylcholine receptor modulators
mAChRsTooltip Muscarinic acetylcholine receptors
Agonists
Antagonists
Precursors
(and prodrugs)
See also
Receptor/signaling modulators
Nicotinic acetylcholine receptor modulators
Acetylcholine metabolism/transport modulators
Nicotinic acetylcholine receptor modulators
nAChRsTooltip Nicotinic acetylcholine receptors
Agonists
(and PAMsTooltip positive allosteric modulators)
Antagonists
(and NAMsTooltip negative allosteric modulators)
Precursors
(and prodrugs)
See also
Receptor/signaling modulators
Muscarinic acetylcholine receptor modulators
Acetylcholine metabolism/transport modulators
Adrenergic receptor modulators
α1
Agonists
Antagonists
α2
Agonists
Antagonists
β
Agonists
Antagonists
Dopamine receptor modulators
D1-like
Agonists
PAMs
Antagonists
D2-like
Agonists
Antagonists
Histamine receptor modulators
H1
Agonists
Antagonists
H2
Agonists
Antagonists
H3
Agonists
Antagonists
H4
Agonists
Antagonists
See also
Receptor/signaling modulators
Monoamine metabolism modulators
Monoamine reuptake inhibitors
Monoamine reuptake inhibitors
DATTooltip Dopamine transporter
(DRIsTooltip Dopamine reuptake inhibitors)
NETTooltip Norepinephrine transporter
(NRIsTooltip Norepinephrine reuptake inhibitors)
SERTTooltip Serotonin transporter
(SRIsTooltip Serotonin reuptake inhibitors)
VMATsTooltip Vesicular monoamine transporters
Others
See also: Receptor/signaling modulatorsMonoamine releasing agentsAdrenergicsDopaminergicsSerotonergicsMonoamine metabolism modulatorsMonoamine neurotoxins
Serotonin receptor modulators
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
Tricyclics
Classes
Antidepressants
(Tricyclic antidepressants (TCAs))
Antihistamines
Antipsychotics
Anticonvulsants
Anticholinergics
Others
Categories: