Misplaced Pages

:WikiProject Chemicals/Chembox validation/VerifiedDataSandbox and Carbonic acid: Difference between pages - Misplaced Pages

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Difference between pages)
Page 1
Page 2
Content deleted Content addedVisualWikitext
Revision as of 04:39, 17 February 2012 editBeetstra (talk | contribs)Edit filter managers, Administrators172,031 edits Saving copy of the {{chembox}} taken from revid 477293703 of page Carbonic_acid for the Chem/Drugbox validation project (updated: '').  Latest revision as of 00:41, 20 November 2024 edit Ira Leviton (talk | contribs)Extended confirmed users330,756 edits Fixed a reference. Please see Category:CS1 errors: dates and Category:CS1 maint: url-status
Line 1: Line 1:
{{short description|Chemical compound}}
{{ambox | text = This page contains a copy of the infobox ({{tl|chembox}}) taken from revid of page ] with values updated to verified values.}}
{{Distinguish|Phenol{{!}}carbolic acid|carboxylic acid}}
{{chembox
{{Redirect|Carbonyl hydroxide|the chemical compound with formula COOH (carbonyl group linked to hydroxyl group)|Carboxylic acid}}
| verifiedrevid = 476992986
{{Use dmy dates|date=March 2021}}
{{Chembox
| Watchedfields = changed
| verifiedrevid = 477313558
| ImageFileL1_Ref = {{chemboximage|correct|??}} | ImageFileL1_Ref = {{chemboximage|correct|??}}
| ImageFile =
| ImageFileL1 = Carbonic-acid-2D.svg
| ImageFile1 = Carbonic-acid-2D.svg
| ImageSizeL1 = 100px
| ImageNameL1 = Structural formula | ImageName1 = Structural formula
| ImageFileR1 = Carbonic-acid-3D-balls.png | ImageFile2=Carbonic-acid-3D-balls.png
| ImageName2=Ball-and-stick model
| ImageSizeR1 = 120px
| OtherNames = {{ubl|Oxidocarboxylic acid|Hydroxyformic acid|Hydroxymethanoic acid|Carbonylic acid|Hydroxycarboxylic acid|Dihydroxycarbonyl|Carbon dioxide solution|Aerial acid|Metacarbonic acid}}
| ImageNameR1 = Ball-and-stick model
| IUPACName = Carbonic acid<ref name=iupac2013>{{cite book |title=Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book) |publisher=The ] |date=2014 |location=Cambridge |pages=P001–4 |doi=10.1039/9781849733069-FP001 |isbn=978-0-85404-182-4 |chapter=Front Matter}}</ref>
| IUPACName = Carbonic acid
| PIN =
| OtherNames = Carbon dioxide solution; Dihydrogen carbonate; acid of air; Aerial acid; Hydroxymethanoic acid
| SystematicName =
| Section1 = {{Chembox Identifiers | Section1 = {{Chembox Identifiers
| CASNo = 463-79-6
| KEGG_Ref = {{keggcite|correct|kegg}}
| CASNo_Ref = {{cascite|correct|CAS}}
| KEGG = C01353
| UNII_Ref = {{fdacite|correct|FDA}}
| InChI = 1/CH2O3/c2-1(3)4/h(H2,2,3,4)
| UNII = 142M471B3J
| InChIKey = BVKZGUZCCUSVTD-UHFFFAOYAU
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 28976
| ChEMBL_Ref = {{ebicite|correct|EBI}} | ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 1161632 | ChEMBL = 1161632
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 747
| DrugBank = DB14531
| EC_number = 610-295-3
| Gmelin = 25554
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = C01353
| PubChem = 767
| InChI = 1/H2O3/c2-1(3)4/h(H2,2,3,4)
| InChIKey = BVKZGUZCCUSVTD-UHFFFAOYAU
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/CH2O3/c2-1(3)4/h(H2,2,3,4) | StdInChI = 1S/CH2O3/c2-1(3)4/h(H2,2,3,4)
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = BVKZGUZCCUSVTD-UHFFFAOYSA-N | StdInChIKey = BVKZGUZCCUSVTD-UHFFFAOYSA-N
| CASNo = 463-79-6
| CASNo_Ref = {{cascite|correct|CAS}}
| PubChem =
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 747
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 28976
| SMILES = O=C(O)O | SMILES = O=C(O)O
}} }}
| Section2 = {{Chembox Properties | Section2 = {{Chembox Properties
| Appearance = Colorless gas
| Formula = H<sub>2</sub>CO<sub>3</sub>
| Formula = {{chem|H|2|CO|3}}
| MolarMass = 62.03 g/mol
| ConjugateBase = ], ]
| Appearance =
| pKa = {{ubl|p''K''<sub>a1</sub> {{=}} 3.75 (25 °C; anhydrous)<ref name=P82db>{{cite book|title=Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution|editor-first=D.&nbsp;D.|editor-last=Perrin|edition=2nd|series=] Chemical Data|issue=29|publisher=Pergamon|location=Oxford|year=1982|publication-date=1984|orig-date=1969|lccn=82-16524|isbn=0-08-029214-3|at="Carbonic Acid, H<sub>2</sub>CO<sub>3</sub>" entry}}</ref>|p''K''<sub>a1</sub> {{=}} 6.35 (hydrous)<ref name=P82db/>|p''K''<sub>a2</sub> {{=}} 10.33<ref name=P82db/>}}
| Density = 1.0 g/cm<sup>3</sup> (dilute soln.)
| MeltingPtC = -53
| Solubility = Exists only in solution
| MeltingPt_ref = <ref name="sublime">{{cite journal |last1=W. Hage |first1=K. R. Liedl |last2=Liedl |first2=E. |title=Carbonic Acid in the Gas Phase and Its Astrophysical Relevance |journal=] |volume=279 |pages=1332–5
| pKa = 6.3 (p''K''<sub>a1</sub>), 10.329 (p''K''<sub>a2</sub>)
|year=1998 |doi=10.1126/science.279.5355.1332 |pmid=9478889 |last3=Hallbrucker |first3=A |last4=Mayer |first4=E |issue=5355| bibcode=1998Sci...279.1332H}}</ref>
| MeltingPt = n/a
| MeltingPt_notes = (sublimes)
| BoilingPt =
| BoilingPtC = 127
}}
| BoilingPt_notes = (decomposes)
| BoilingPt_ref =
| Solubility = Reacts to form ] and ]
}}
| Section3 = {{Chembox Hazards | Section3 = {{Chembox Hazards
| MainHazards = | NFPA-H = 0
| FlashPt = | NFPA-F = 0
| NFPA-R = 1
}}
}}
| Section4 = {{Chembox Structure
| Structure_ref =
| CrystalStruct = monoclinic
| SpaceGroup = p21/c, No. 14
| PointGroup = -
| LattConst_a = 5.392 Å
| LattConst_b = 6.661 Å
| LattConst_c = 5.690 Å
| LattConst_alpha =
| LattConst_beta = 92.66
| LattConst_gamma =
| LattConst_Comment = ({{chem|D|2|CO|3}} at 1.85 GPa, 298 K)
| LattConst_ref = <ref name=neutron>{{cite journal |last1=Benz |first1=Sebastian |last2=Chen |first2=Da |last3=Möller |first3=Andreas |last4=Hofmann |first4=Michael |last5=Schnieders |first5=David |last6=Dronskowski |first6=Richard |title=The Crystal Structure of Carbonic Acid |journal=] |date=September 2022 |volume=10 |issue=9 |pages=132 |language=en |issn=2304-6740 |doi=10.3390/inorganics10090132 |doi-access=free}}</ref>
| UnitCellVolume = 204.12 Å<sup>3</sup>
| UnitCellFormulas = 4 formula per cell
| Coordination =
| MolShape =
| OrbitalHybridisation =
| Dipole =
}}
| Section5 =
| Section6 =
}} }}

'''Carbonic acid''' is a ] with the chemical formula {{chem2|H2CO3|auto=on}}. The ] rapidly converts to ] and ] in the presence of water. However, in the absence of water, it is quite stable at ].<ref>{{Greenwood&Earnshaw2nd|page=310}}</ref><ref name="lo">{{cite journal |last1=Loerting |first1=Thomas |author1-link=Thomas Loerting |last2=Tautermann |first2=Christofer |last3=Kroemer |first3=Romano T. |last4=Kohl |first4=Ingrid |last5=Hallbrucker |first5=Andreas |last6=Mayer |first6=Erwin |last7=Liedl |first7=Klaus R. |last8=Loerting |first8=Thomas |last9=Tautermann |first9=Christofer |last10=Kohl |first10=Ingrid |last11=Hallbrucker |first11=Andreas |last12=Erwin |first12=Mayer |last13=Liedl |first13=Klaus R. |date=2000 |title=On the Surprising Kinetic Stability of Carbonic Acid (H<sub>2</sub>CO<sub>3</sub>) |journal=Angewandte Chemie International Edition |volume=39 |issue=5 |pages=891–4 |doi=10.1002/(SICI)1521-3773(20000303)39:5<891::AID-ANIE891>3.0.CO;2-E |pmid=10760883}}</ref> The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the ].<ref name=neutron/>

In biochemistry and physiology, the name "carbonic acid" is sometimes applied to ]s of ]. These ] play an important role in the ], used to maintain ].<ref> by Kerry Brandis.</ref>

==Terminology in biochemical literature==
In ], the term "carbonic acid" strictly refers to the ] with the formula {{chem|H|2|CO|3}}. Some ] literature effaces the distinction between carbonic acid and carbon dioxide dissolved in extracellular fluid.

In ], carbon dioxide excreted by the ] may be called ''volatile acid'' or ''respiratory acid''.

==Anhydrous carbonic acid==
At ambient temperatures, pure carbonic acid is a stable gas.<ref name="lo" /> There are two main methods to produce ] carbonic acid: reaction of ] and ] at ] in ] and ] of pure ].<ref name="sublime" /> Chemically, it behaves as a ] ].<ref name=peroxide /><ref name="Andersen" />

Carbonic acid ] exhibit three ]: cis–cis, cis–trans, and trans–trans.<ref>{{cite journal |author1=Loerting, Thomas |author2=Bernard, Juergen |year=2010 |title=Aqueous Carbonic Acid (H<sub>2</sub>CO<sub>3</sub>) |journal=ChemPhysChem |issue=11 |pages=2305–9 |doi=10.1002/cphc.201000220}}</ref>

At low temperatures and ], solid carbonic acid is ] and lacks ] in ].<ref name="wi">{{cite journal |last1=Winkel |first1=Katrin |last2=Hage |first2=Wolfgang |last3=Loerting |first3=Thomas |last4=Price |first4=Sarah L. |last5=Mayer |first5=Erwin |date=2007 |title=Carbonic Acid: From Polyamorphism to Polymorphism |journal=Journal of the American Chemical Society |volume=129 |issue=45 |pages=13863–71 |doi=10.1021/ja073594f |pmid=17944463}}</ref> But at high pressure, carbonic acid crystallizes, and modern analytical spectroscopy can measure its geometry.

According to ] of ] carbonic acid ({{chem|D|2|CO|3}}) in a ] (]/]) at 1.85&nbsp;GPa, the molecules are planar and form ] joined by pairs of ]s. All three ] are nearly equidistant at 1.34&nbsp;], intermediate between typical C-O and C=O distances (respectively 1.43 and 1.23&nbsp;Å). The unusual C-O bond lengths are attributed to delocalized ] in the molecule's center and extraordinarily strong hydrogen bonds. The same effects also induce a very short O—O separation (2.13&nbsp;Å), through the 136° O-H-O ] imposed by the doubly hydrogen-bonded 8-membered rings.<ref name="neutron" /> Longer O—O distances are observed in strong intramolecular hydrogen bonds, e.g. in ], where the distances exceed 2.4&nbsp;Å.<ref name="wi" />

==In aqueous solution==
In even a slight presence of water, carbonic acid ] to ] and ], which then ] further decomposition.<ref name="lo" /> For this reason, carbon dioxide can be considered the carbonic ].

The ] ] at 25&nbsp;°C is {{awrap|/&nbsp;≈ 1.7×10<sup>−3</sup>}} in pure water<ref name="HS">{{cite book |last1=Housecroft |first1=C.E. |title=Inorganic Chemistry |last2=Sharpe |first2=A.G. |date=2005 |publisher=Prentice-Pearson-Hall |isbn=0-13-039913-2 |edition=2nd |page=368 |oclc=56834315}}</ref> and ≈&nbsp;1.2×10<sup>−3</sup> in ].<ref name="SB">{{cite journal |last=Soli |first=A. L. |author2=R. H. Byrne |year=2002 |title=CO<sub>2</sub> system hydration and dehydration kinetics and the equilibrium CO<sub>2</sub>/H<sub>2</sub>CO<sub>3</sub> ratio in aqueous NaCl solution |journal=Marine Chemistry |volume=78 |issue=2–3 |pages=65–73 |doi=10.1016/S0304-4203(02)00010-5}}</ref> Hence the majority of carbon dioxide at geophysical or biological ] does not convert to carbonic acid, remaining dissolved {{CO2}} gas. However, the ] equilibrium is reached quite slowly: the ]s are 0.039&nbsp;]<sup>−1</sup> for hydration and 23&nbsp;s<sup>−1</sup> for dehydration.

===In biological solutions===
In the presence of the enzyme ], equilibrium is instead reached rapidly, and the following reaction takes precedence:<ref name="Lindskog_1997">{{cite journal |vauthors=Lindskog S |year=1997 |title=Structure and mechanism of carbonic anhydrase |journal=Pharmacology & Therapeutics |volume=74 |issue=1 |pages=1–20 |doi=10.1016/S0163-7258(96)00198-2 |pmid=9336012}}</ref> <chem display=block>HCO3^- {+} H^+ <=> CO2 {+} H2O</chem>

When the created carbon dioxide exceeds its solubility, gas evolves and a third equilibrium <chem display=block>CO_2 (soln) <=> CO_2 (g)</chem> must also be taken into consideration. The equilibrium constant for this reaction is defined by ].

The two reactions can be combined for the equilibrium in solution: <math chem="" display="block">\begin{align}
\ce{HCO3^{-}{} + H+{} <=> CO2(soln){} + H2O} && K_3 = \frac{}{}
\end{align}</math> When Henry's law is used to calculate the denominator '''care is needed''' with regard to units since Henry's law constant can be commonly expressed with 8 different dimensionalities.<ref>{{Cite journal |last=Sander |first=Rolf |last2=Acree |first2=William E. |last3=Visscher |first3=Alex De |last4=Schwartz |first4=Stephen E. |last5=Wallington |first5=Timothy J. |date=2022-01-01 |title=Henry’s law constants (IUPAC Recommendations 2021) |url=https://www.degruyter.com/document/doi/10.1515/pac-2020-0302/html |journal=Pure and Applied Chemistry |language=en |volume=94 |issue=1 |pages=71–85 |doi=10.1515/pac-2020-0302 |issn=1365-3075|doi-access=free}}</ref>

=== In water pH control ===
In wastewater treatment and agriculture irrigation, carbonic acid is used to acidify the water similar to ] and ] produced by sulfur burners.<ref>{{Cite web |last=Meneses |first=Adolfo |date=November 19, 2024 |title=Irrigation water acidification using captured CO2; An option to traditional acidification systems. |url=https://www.worldagexpo.com/wp-content/uploads/sites/2/2020/11/Soil-acidification-r.-1.0.pdf |access-date=November 19, 2024 |website=World Ag Expo}}</ref>

=== Under high CO<sub>2</sub> partial pressure ===
In the ], sparkling or "fizzy water" is usually referred to as ]. It is made by dissolving carbon dioxide under a small ] in water. Many ]s treated the same way ].

Significant amounts of molecular {{chem|H|2|CO|3}} exist in aqueous solutions subjected to pressures of multiple ] (tens of thousands of atmospheres) in planetary interiors.<ref>{{cite journal |last1=Wang |first1=Hongbo |last2=Zeuschner |first2=Janek |last3=Eremets |first3=Mikhail |last4=Troyan |first4=Ivan |last5=Williams |first5=Jonathon |date=27 January 2016 |title=Stable solid and aqueous H<sub>2</sub>CO<sub>3</sub> from CO<sub>2</sub> and H<sub>2</sub>O at high pressure and high temperature |journal=Scientific Reports |volume=6 |issue=1 |page=19902 |bibcode=2016NatSR...619902W |doi=10.1038/srep19902 |pmc=4728613 |pmid=26813580 |doi-access=free}}</ref><ref>{{cite journal |last1=Stolte |first1=Nore |last2=Pan |first2=Ding |date=4 July 2019 |title=Large presence of carbonic acid in CO<sub>2</sub>-rich aqueous fluids under Earth's mantle conditions |journal=The Journal of Physical Chemistry Letters |volume=10 |issue=17 |pages=5135–41 |arxiv=1907.01833 |doi=10.1021/acs.jpclett.9b01919 |pmid=31411889 |s2cid=195791860}}</ref> Pressures of 0.6–1.6&nbsp;] at 100&nbsp;], and 0.75–1.75&nbsp;GPa at 300&nbsp;K are attained in the cores of large icy satellites such as ], ], and ], where water and carbon dioxide are present. Pure carbonic acid, being denser, is expected to have sunk under the ice layers and separate them from the rocky cores of these moons.<ref name="Saleh-Scirep">{{cite journal |author1=G. Saleh |author2=A. R. Oganov |date=2016 |title=Novel Stable Compounds in the C-H-O Ternary System at High Pressure |journal=Scientific Reports |volume=6 |page=32486 |bibcode=2016NatSR...632486S |doi=10.1038/srep32486 |pmc=5007508 |pmid=27580525}}</ref>

== Relationship to bicarbonate and carbonate ==
] of speciation for a hypothetical monoprotic acid: AH concentration as a function of the difference between {{Math|''p''K}} and {{Math|''p''H}}]]
Carbonic acid is the formal ] ] of the ] anion, stable in ]. The protonation constants have been measured to great precision, but depend on overall ] {{Mvar|I}}. The two equilibria most easily measured are as follows: <math chem display="block">\begin{align}
\ce{CO3^{2-}{} + H+{} <=> HCO3^-} && \beta_1 = \frac{}{} \\
\ce{CO3^{2-}{} + 2H+{} <=> H2CO3} && \beta_2 = \frac{}{^2}
\end{align}</math> where brackets indicate the ] of ]. At 25&nbsp;°C, these equilibria empirically satisfy<ref>] (2006). "" (database). </ref><math display="block">\begin{alignat}{6}
\log(\beta_1) =&& 0&.54&I^2 - 0&.96&I +&& 9&.93 \\
\log(\beta_2) =&& -2&.5&I^2 - 0&.043&I +&& 16&.07
\end{alignat}</math>{{Math|log(''&beta;''<sub>1</sub>)}} decreases with increasing {{Mvar|I}}, as does {{Math|log(''&beta;''<sub>2</sub>)}}. In a solution absent other ions (e.g. {{Math|''I'' {{=}} 0}}), these curves imply the following ]:<math display="block">\begin{alignat}{3}
p\text{K}_1 &= \log(\beta_2) - \log(\beta_1) &= 6.77 \\
p\text{K}_2 &= \log(\beta_1) &= 9.93
\end{alignat}</math> Direct values for these constants in the literature include {{math|''p''K<sub>1</sub> {{=}} 6.35}} and {{math|''p''K<sub>2</sub> - ''p''K<sub>1</sub> {{=}} 3.49}}.<ref>{{cite journal |last1=Pines |first1=Dina |last2=Ditkovich |first2=Julia |last3=Mukra |first3=Tzach |last4=Miller |first4=Yifat |last5=Kiefer |first5=Philip M. |last6=Daschakraborty |first6=Snehasis |last7=Hynes |first7=James T. |last8=Pines |first8=Ehud |date=2016 |title=How Acidic Is Carbonic Acid? |journal=J Phys Chem B |volume=120 |issue=9 |pages=2440–51 |doi=10.1021/acs.jpcb.5b12428 |pmc=5747581 |pmid=26862781}}</ref>

To interpret these numbers, note that two chemical species in an acid equilibrium are ] when {{Math|''p''K {{=}} ''p''H}}. In particular, the ] (]) in biological systems exhibits {{Math|''p''H &approx; 7.2}}, so that carbonic acid will be almost 50%-dissociated at equilibrium.

=== Ocean acidification ===
] in ] concentration.|left]]

The ] shows typical equilibrium concentrations, in solution, in ], of carbon dioxide and the various species derived from it, as a function of ].<ref name="peroxide">{{cite journal |last1=Pangotra |first1=Dhananjai |last2=Csepei |first2=Lénárd-István |last3=Roth |first3=Arne |last4=Ponce de León |first4=Carlos |last5=Sieber |first5=Volker |last6=Vieira |first6=Luciana |year=2022 |title=Anodic production of hydrogen peroxide using commercial carbon materials |journal=Applied Catalysis B: Environmental |volume=303 |page=120848 |doi=10.1016/j.apcatb.2021.120848 |s2cid=240250750}}</ref><ref name="Andersen">{{cite journal |last=Andersen |first=C. B. |year=2002 |title=Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems |journal=Journal of Geoscience Education |volume=50 |issue=4 |pages=389–403 |doi=10.5408/1089-9995-50.4.389 |bibcode=2002JGeEd..50..389A |s2cid=17094010}}</ref> As human industrialization has ] of ], the proportion of carbon dioxide dissolved in sea- and freshwater as carbonic acid is also expected to increase. This rise in dissolved acid is also expected to ] those waters, generating a decrease in pH.<ref name="cald03">{{cite journal |last=Caldeira |first=K. |author2=Wickett, M. E. |title=Anthropogenic carbon and ocean pH |journal=] |volume=425 |issue=6956 |pages=365 |year=2003 |s2cid=4417880 |pmid=14508477 |bibcode=2001AGUFMOS11C0385C |doi=10.1038/425365a |doi-access=free |url=https://zenodo.org/record/1233227}}</ref><ref name="sabine">{{cite journal |last=Sabine |first=C. L. |year=2004 |title=The Oceanic Sink for Anthropogenic CO<sub>2</sub> |journal=Science |volume=305 |issue=5682 |pages=367–371 |pmid=15256665 |bibcode=2004Sci...305..367S |hdl=10261/52596 |hdl-access=free |s2cid=5607281 |doi=10.1126/science.1097403 |url=https://www.science.org/doi/abs/10.1126/science.1097403 |access-date=22 June 2021 |url-status=live |archive-url=https://web.archive.org/web/20080706143710/http://www.sciencemag.org/cgi/content/short/305/5682/367 |archive-date=6 July 2008}}</ref> It has been estimated that the increase in dissolved carbon dioxide has already caused the ocean's average surface pH to decrease by about 0.1 from pre-industrial levels.

==Further reading==
*{{WsPSM2|Climate and Carbonic Acid|59|July 1901}}
*{{cite journal |last1=Welch |first1=M. J. |last2=Lifton |first2=J. F. |last3=Seck |first3=J. A. |title=Tracer studies with radioactive oxygen-15. Exchange between carbon dioxide and water |journal=] |volume=73 |issue=335 |year=1969 |page=3351 |doi=10.1021/j100844a033}}
*{{cite book |last=Jolly |first=W. L. |title=Modern Inorganic Chemistry |edition=2nd|publisher=McGraw-Hill |year=1991 |isbn=978-0-07-112651-9}}
*{{cite journal |last1=Moore |first1=M. H. |last2=Khanna |first2=R. |title=Infrared and Mass Spectral Studies of Proton Irradiated H<sub>2</sub>O+CO<sub>2</sub> Ice: Evidence for Carbonic Acid Ice: Evidence for Carbonic Acid |journal=] |volume=47A |pages=255–262 |year=1991 |issue=2 |bibcode=1991AcSpA..47..255M |doi=10.1016/0584-8539(91)80097-3 |url=https://zenodo.org/record/1258549}}
*{{cite journal |last1=W. Hage |first1=K. R. Liedl |last2=Liedl |first2=E. |last3=Hallbrucker |first3=A |last4=Mayer |first4=E |title=Carbonic Acid in the Gas Phase and Its Astrophysical Relevance |journal=] |volume=279 |pages=1332–5 |year=1998 |pmid=9478889 |issue=5355 |bibcode=1998Sci...279.1332H |doi=10.1126/science.279.5355.1332}}
*{{cite journal |last1=Hage |first1=W. |last2=Hallbrucker |first2=A. |last3=Mayer |first3=E. |title=A Polymorph of Carbonic Acid and Its Possible Astrophysical Relevance |journal=] |volume=91 |pages=2823–6 |year=1995 |issue=17 |bibcode=1995JCSFT..91.2823H |doi=10.1039/ft9959102823}}

{{clear}}

==References==
<references />

==External links==
*
*

{{Inorganic compounds of carbon}}
{{Carbonates}}
{{Hydrogen compounds}}
{{Oxides of carbon}}

{{Authority control}}
]
]
]
]