Misplaced Pages

Delaporte distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Delaporte
Probability mass functionPlot of the PMF for various Delaporte distributions.
When α {\displaystyle \alpha } and β {\displaystyle \beta } are 0, the distribution is the Poisson.
When λ {\displaystyle \lambda } is 0, the distribution is the negative binomial.
Cumulative distribution functionPlot of the PMF for various Delaporte distributions.
When α {\displaystyle \alpha } and β {\displaystyle \beta } are 0, the distribution is the Poisson.
When λ {\displaystyle \lambda } is 0, the distribution is the negative binomial.
Parameters

λ > 0 {\displaystyle \lambda >0} (fixed mean)

α , β > 0 {\displaystyle \alpha ,\beta >0} (parameters of variable mean)
Support k { 0 , 1 , 2 , } {\displaystyle k\in \{0,1,2,\ldots \}}
PMF i = 0 k Γ ( α + i ) β i λ k i e λ Γ ( α ) i ! ( 1 + β ) α + i ( k i ) ! {\displaystyle \sum _{i=0}^{k}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{k-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(k-i)!}}}
CDF j = 0 k i = 0 j Γ ( α + i ) β i λ j i e λ Γ ( α ) i ! ( 1 + β ) α + i ( j i ) ! {\displaystyle \sum _{j=0}^{k}\sum _{i=0}^{j}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{j-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(j-i)!}}}
Mean λ + α β {\displaystyle \lambda +\alpha \beta }
Mode { z , z + 1 { z Z } : z = ( α 1 ) β + λ z otherwise {\displaystyle {\begin{cases}z,z+1&\{z\in \mathbb {Z} \}:\;z=(\alpha -1)\beta +\lambda \\\lfloor z\rfloor &{\textrm {otherwise}}\end{cases}}}
Variance λ + α β ( 1 + β ) {\displaystyle \lambda +\alpha \beta (1+\beta )}
Skewness See #Properties
Excess kurtosis See #Properties
MGF e λ ( e t 1 ) ( 1 β ( e t 1 ) ) α {\displaystyle {\frac {e^{\lambda (e^{t}-1)}}{(1-\beta (e^{t}-1))^{\alpha }}}}

The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science. It can be defined using the convolution of a negative binomial distribution with a Poisson distribution. Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the λ {\displaystyle \lambda } parameter, and a gamma-distributed variable component, which has the α {\displaystyle \alpha } and β {\displaystyle \beta } parameters. The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959, although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders, where it was called the Formel II distribution.

Properties

The skewness of the Delaporte distribution is:

λ + α β ( 1 + 3 β + 2 β 2 ) ( λ + α β ( 1 + β ) ) 3 2 {\displaystyle {\frac {\lambda +\alpha \beta (1+3\beta +2\beta ^{2})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{\frac {3}{2}}}}}

The excess kurtosis of the distribution is:

λ + 3 λ 2 + α β ( 1 + 6 λ + 6 λ β + 7 β + 12 β 2 + 6 β 3 + 3 α β + 6 α β 2 + 3 α β 3 ) ( λ + α β ( 1 + β ) ) 2 {\displaystyle {\frac {\lambda +3\lambda ^{2}+\alpha \beta (1+6\lambda +6\lambda \beta +7\beta +12\beta ^{2}+6\beta ^{3}+3\alpha \beta +6\alpha \beta ^{2}+3\alpha \beta ^{3})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{2}}}}

References

  1. Panjer, Harry H. (2006). "Discrete Parametric Distributions". In Teugels, Jozef L.; Sundt, Bjørn (eds.). Encyclopedia of Actuarial Science. John Wiley & Sons. doi:10.1002/9780470012505.tad027. ISBN 978-0-470-01250-5.
  2. ^ Johnson, Norman Lloyd; Kemp, Adrienne W.; Kotz, Samuel (2005). Univariate discrete distributions (Third ed.). John Wiley & Sons. pp. 241–242. ISBN 978-0-471-27246-5.
  3. Vose, David (2008). Risk analysis: a quantitative guide (Third, illustrated ed.). John Wiley & Sons. pp. 618–619. ISBN 978-0-470-51284-5. LCCN 2007041696.
  4. Delaporte, Pierre J. (1960). "Quelques problèmes de statistiques mathématiques poses par l'Assurance Automobile et le Bonus pour non sinistre" [Some problems of mathematical statistics as related to automobile insurance and no-claims bonus]. Bulletin Trimestriel de l'Institut des Actuaires Français (in French). 227: 87–102.
  5. von Lüders, Rolf (1934). "Die Statistik der seltenen Ereignisse" [The statistics of rare events]. Biometrika (in German). 26 (1–2): 108–128. doi:10.1093/biomet/26.1-2.108. JSTOR 2332055.

Further reading

External links

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: