Misplaced Pages

Young subgroup

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Young subgroups of the symmetric group S n {\displaystyle S_{n}} are special subgroups that arise in combinatorics and representation theory. When S n {\displaystyle S_{n}} is viewed as the group of permutations of the set { 1 , 2 , , n } {\displaystyle \{1,2,\ldots ,n\}} , and if λ = ( λ 1 , , λ ) {\displaystyle \lambda =(\lambda _{1},\ldots ,\lambda _{\ell })} is an integer partition of n {\displaystyle n} , then the Young subgroup S λ {\displaystyle S_{\lambda }} indexed by λ {\displaystyle \lambda } is defined by S λ = S { 1 , 2 , , λ 1 } × S { λ 1 + 1 , λ 1 + 2 , , λ 1 + λ 2 } × × S { n λ + 1 , n λ + 2 , , n } , {\displaystyle S_{\lambda }=S_{\{1,2,\ldots ,\lambda _{1}\}}\times S_{\{\lambda _{1}+1,\lambda _{1}+2,\ldots ,\lambda _{1}+\lambda _{2}\}}\times \cdots \times S_{\{n-\lambda _{\ell }+1,n-\lambda _{\ell }+2,\ldots ,n\}},} where S { a , b , } {\displaystyle S_{\{a,b,\ldots \}}} denotes the set of permutations of { a , b , } {\displaystyle \{a,b,\ldots \}} and × {\displaystyle \times } denotes the direct product of groups. Abstractly, S λ {\displaystyle S_{\lambda }} is isomorphic to the product S λ 1 × S λ 2 × × S λ {\displaystyle S_{\lambda _{1}}\times S_{\lambda _{2}}\times \cdots \times S_{\lambda _{\ell }}} . Young subgroups are named for Alfred Young.

When S n {\displaystyle S_{n}} is viewed as a reflection group, its Young subgroups are precisely its parabolic subgroups. They may equivalently be defined as the subgroups generated by a subset of the adjacent transpositions ( 1   2 ) , ( 2   3 ) , , ( n 1   n ) {\displaystyle (1\ 2),(2\ 3),\ldots ,(n-1\ n)} .

In some cases, the name Young subgroup is used more generally for the product S B 1 × × S B {\displaystyle S_{B_{1}}\times \cdots \times S_{B_{\ell }}} , where { B 1 , , B } {\displaystyle \{B_{1},\ldots ,B_{\ell }\}} is any set partition of { 1 , , n } {\displaystyle \{1,\ldots ,n\}} (that is, a collection of disjoint, nonempty subsets whose union is { 1 , , n } {\displaystyle \{1,\ldots ,n\}} ). This more general family of subgroups consists of all the conjugates of those under the previous definition. These subgroups may also be characterized as the subgroups of S n {\displaystyle S_{n}} that are generated by a set of transpositions.

References

  1. Sagan, Bruce (2001), The Symmetric Group (2 ed.), Springer-Verlag, p. 54
  2. Björner, Anders; Brenti, Francesco (2005), Combinatorics of Coxeter groups, Springer, p. 41, doi:10.1007/3-540-27596-7, ISBN 978-3540-442387
  3. Kerber, A. (1971), Representations of permutation groups, vol. I, Springer-Verlag, p. 17
  4. Jones, Andrew R. (1996), "A Combinatorial Approach to the Double Cosets of the Symmetric Group with respect to Young Subgroups", European Journal of Combinatorics, 17 (7): 647–655, doi:10.1006/eujc.1996.0056
  5. Douvropoulos, Theo; Lewis, Joel Brewster; Morales, Alejandro H. (2022), "Hurwitz Numbers for Reflection Groups I: Generatingfunctionology", Enumerative Combinatorics and Applications, 2 (3): Article #S2R20, arXiv:2112.03427, doi:10.54550/ECA2022V2S3R20

Further reading

Categories: