Misplaced Pages

Orders of magnitude (mass)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from 1 E-2 kg) Comparison of a wide range of masses

An overview of ranges of mass

To help compare different orders of magnitude, the following lists describe various mass levels between 10 kg and 10 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe. Typically, an object having greater mass will also have greater weight (see mass versus weight), especially if the objects are subject to the same gravitational field strength.

Units of mass

SI multiples of gram (g)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10 g dg decigram 10 g dag decagram
10 g cg centigram 10 g hg hectogram
10 g mg milligram 10 g kg kilogram
10 g μg microgram (mcg) 10 g Mg megagram (tonne)
10 g ng nanogram 10 g Gg gigagram
10 g pg picogram 10 g Tg teragram
10 g fg femtogram 10 g Pg petagram
10 g ag attogram 10 g Eg exagram
10 g zg zeptogram 10 g Zg zettagram
10 g yg yoctogram 10 g Yg yottagram
10 g rg rontogram 10 g Rg ronnagram
10 g qg quectogram 10 g Qg quettagram
Common prefixes are in bold face.

The table at right is based on the kilogram (kg), the base unit of mass in the International System of Units (SI). The kilogram is the only standard unit to include an SI prefix (kilo-) as part of its name. The gram (10 kg) is an SI derived unit of mass. However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 kg is a megagram (10 g), not a *kilokilogram.

The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 kg. The unit is in common use for masses above about 10 kg and is often used with SI prefixes. For example, a gigagram (Gg) or 10 g is 10 tonnes, commonly called a kilotonne.

Other units

Other units of mass are also in use. Historical units include the stone, the pound, the carat, and the grain.

For subatomic particles, physicists use the mass equivalent to the energy represented by an electronvolt (eV). At the atomic level, chemists use the mass of one-twelfth of a carbon-12 atom (the dalton). Astronomers use the mass of the sun (M).

The least massive things: below 10 kg

Unlike other physical quantities, mass–energy does not have an a priori expected minimal quantity, or an observed basic quantum as in the case of electric charge. Planck's law allows for the existence of photons with arbitrarily low energies. Consequently, there can only ever be an experimental upper bound on the mass of a supposedly massless particle; in the case of the photon, this confirmed upper bound is of the order of 3×10 eV/c = 10 kg.

Factor (kg) Value Item
10 1.07×10 kg Graviton, upper bound (6×10 eV/c)
10 4.2×10 kg Mass equivalent of the energy of a photon at the peak of the spectrum of the cosmic microwave background radiation (0.235 meV/c)
10 1.8×10 kg 1 eV/c, the mass equivalent of one electronvolt
3.6×10 kg Electron neutrino, upper limit on mass (2 eV/c)
10
quectogram (qg)
10 9.11×10 kg Electron (511 keV/c), the lightest elementary particle with a measured nonzero rest mass
10
rontogram (rg)
3.0–5.5×10 kg Up quark (as a current quark) (1.7–3.1 MeV/c)
10 1.9×10 kg Muon (106 MeV/c)
10
yoctogram (yg)
1.661×10 kg Dalton (Da), a.k.a. unified atomic mass unit (u)
1.673×10 kg Proton (938.3 MeV/c)
1.674×10 kg Hydrogen atom, the lightest atom
1.675×10 kg Neutron (939.6 MeV/c)
10 1.2×10 kg Lithium atom (6.941 Da)
3.0×10 kg Water molecule (18.015 Da)
8.0×10 kg Titanium atom (47.867 Da)
10 1.1×10 kg Copper atom (63.546 Da)
1.6×10 kg Z boson (91.2 GeV/c)
2.2×10 kg Higgs boson (125 GeV/c)
3.1×10 kg Top quark (173 GeV/c), the heaviest known elementary particle
3.2×10 kg Caffeine molecule (194 Da)
3.5×10 kg Lead-208 atom
4.9×10 kg Oganesson-294 atom, the heaviest known nuclide

10 to 10 kg

Factor (kg) Value Item
10
zeptogram (zg)
1.2×10 kg Buckyball molecule (720 Da)
10 1.4×10 kg Ubiquitin, a small protein (8.6 kDa)
5.5×10 kg A typical protein (median size of roughly 300 amino acids ≈ 33 kDa)
10 1.1×10 kg Haemoglobin A molecule in blood (64.5 kDa)
10
attogram (ag)
1.65×10 kg Double-stranded DNA molecule consisting of 1,578 base pairs (995 kDa)
4.3×10 kg Prokaryotic ribosome (2.6 MDa)
7.1×10 kg Eukaryotic ribosome (4.3 MDa)
7.6×10 kg Brome mosaic virus, a small virus (4.6 MDa)
10 3×10 kg Synaptic vesicle in rats (16.1 ± 3.8 MDa)
6.8×10 kg Tobacco mosaic virus (41 MDa)
10 1.1×10 kg Nuclear pore complex in yeast (66 MDa)
2.5×10 kg Human adenovirus (150 MDa)

10 to 10 kg

Factor (kg) Value Item
10
femtogram (fg)
1×10 kg HIV-1 virus
4.7×10 kg DNA sequence of length 4.6 Mbp, the weight of the E. coli genome
10 ~1×10 kg Vaccinia virus, a large virus
1.1×10 kg Mass equivalent of 1 joule
10 3×10 kg Prochlorococcus cyanobacteria, the smallest (and possibly most plentiful) photosynthetic organism on Earth
10
picogram (pg)
1×10 kg E. coli bacterium (wet weight)
6×10 kg DNA in a typical diploid human cell (approximate)
10 2.2×10 kg Human sperm cell
6×10 kg Yeast cell (quite variable)
10 1.5×10 kg Dunaliella salina, a green alga (dry weight)

10 to 10 kg

Scanning electron micrograph showing grains of sand

Factor (kg) Value Item
10
nanogram (ng)
1×10 kg Average human cell (1 nanogram)
2–3×10 kg HeLa human cell
8×10 kg Grain of birch pollen
10    
10 2.5×10 kg Grain of maize pollen
3.5×10 kg Very fine grain of sand (0.063 mm diameter, 350 nanograms)
10
microgram (μg)
3.6×10 kg Human ovum
2.4×10 kg US RDA for vitamin B12 for adults
10 10 kg Speculated approximate lower limit of the mass of a primordial black hole
1.5×10 kg US RDA for vitamin D for adults
~2×10 kg Uncertainty in the mass of the International Prototype of the Kilogram (IPK) (±~20 μg)
2.2×10 kg Planck mass, can be expressed as the mass of a 2 Planck Length radius black hole
~7×10 kg One eyelash hair (approximate)
10 1.5×10 kg US RDA for iodine for adults
2–3×10 kg Fruit fly (dry weight)

10 to 1 kg

Factor (kg) Value Item
10
milligram (mg)
2.5×10 kg Mosquitoes, common smaller species (about 2.5 milligrams), grain of salt or sand, medicines are typically expressed in milligrams
10
centigram (cg)
1.1×10 kg Small granule of quartz (2 mm diameter, 11 milligrams)
2×10 kg Adult housefly (Musca domestica, 21.4 milligrams)
10
decigram (dg)
0.27–2.0×10 kg Range of amounts of caffeine in one cup of coffee (27–200 milligrams)
1.5×10 kg A frame of 35mm motion picture film (157 milligrams)
2×10 kg Metric carat (200 milligrams)
10
gram (g)
1×10 kg One cubic centimeter of water (1 gram)
1×10 kg US dollar bill (1 gram)
~1×10 kg Two raisins (approximately 1 gram)
~8×10 kg Coins of one euro (7.5 grams), one U.S. dollar (8.1 grams) and one Canadian loonie (7 grams , 6.27 grams )
10
decagram (dag)
1.2×10 kg Mass of one mole (6.02214×10 atoms) of carbon-12 (12 grams)
1.37×10 kg Amount of ethanol defined as one standard drink in the U.S. (13.7 grams)
2–4×10 kg Adult mouse (Mus musculus, 20–40 grams)
2.8×10 kg Ounce (avoirdupois) (28.3495 grams)
4.7×10 kg Mass equivalent of the energy that is 1 megaton of TNT equivalent
10
hectogram   (hg)
0.1-0.2 kg An orange (100–200 grams)
0.142-0.149 kg A baseball used in the major league.
0.454 kg Pound (avoirdupois) (453.6 grams)

1 kg to 10 kg

Iron weights up to 50 kilograms depicted in Dictionnaire encyclopédique de l'épicerie et des industries annexes.
Factor (kg) Value Item
1 kg
kilogram (kg)
1 kg One litre (0.001 m) of water
1–3 kg Smallest breed of dog (Chihuahua)
1–3 kg Typical laptop computer, 2010
1–3 kg Adult domestic tortoise
2.5–4 kg Newborn human baby
4.0 kg Women's shot
4–5 kg Housecat
7.26 kg Men's shot
10 9–27 kg Medium-sized dog
10–30 kg A CRT computer monitor or television set
50 kg Large dog breed (Great Dane)
70 kg Adult human
10 130–180 kg Mature lion, female (130 kg) and male (180 kg)
200–250 kg Giant tortoise
240–450 kg Grand piano
400–900 kg Dairy cow
500–500,000 kg A teaspoon (5 ml) of white dwarf material (0.5–500 tonnes)
635 kg Heaviest human in recorded history (Jon Brower Minnoch)
907.2 kg 1 short ton (2000 pounds - U.S.)
10
megagram (Mg)
1000 kg 1 tonne (U.S. spelling: metric ton)
1000 kg 1 cubic metre of water
1016.05 kg Ton (British) / 1 long ton (2240 pounds - U.S.)
1300–1600 kg Typical passenger cars
2700–6000 kg Adult elephant
10 1.1×10 kg Hubble Space Telescope (11 tonnes)
1.2×10 kg Largest elephant on record (12 tonnes)
1.4×10 kg Big Ben (bell) (14 tonnes)
2.7×10 kg ENIAC computer, 1946 (30 tonnes)
4×10 kg Maximum gross mass (truck + load combined) of a semi-trailer truck in the EU (40–44 tonnes)
5×10–6×10 kg Tank; Bulldozer (50–60 tonnes)
6.0×10 kg Largest single-piece meteorite, Hoba West Meteorite (60 tonnes)
7.3×10 kg Largest dinosaur, Argentinosaurus (73 tonnes)
10 1.74-1.83×10 kg Operational empty weight of a Boeing 747-300
1.8×10 kg Largest animal ever, a blue whale (180 tonnes)
4.2×10 kg International Space Station (417 tonnes)
6×10 kg World's heaviest aircraft: Antonov An-225 (maximum take-off mass: 600 tonnes, payload: 250 tonnes)

10 to 10 kg

Factor (kg) Value Item
10
gigagram (Gg)
1×10 kg Trunk of the giant sequoia tree named General Sherman, largest living tree by trunk volume (1121 tonnes)
2.0×10 kg Launch mass of the Space Shuttle (2041 tonnes)
6×10 kg Largest clonal colony, the quaking aspen named Pando (largest living organism) (6000 tonnes)
7.8×10 kg Virginia-class nuclear submarine (submerged weight)
10 1×10 kg Annual production of Darjeeling tea
5.2×10 kg RMS Titanic when fully loaded (52,000 tonnes)
9.97×10 kg Heaviest train ever: Australia's BHP Iron Ore, 2001 record (99,700 tonnes)
10 6.6×10 kg Largest ship and largest mobile man-made object, Seawise Giant, when fully loaded (660,000 tonnes)
7×10 kg Heaviest (non-pyramid) building, Palace of the Parliament in Bucharest, Romania
10
teragram (Tg)
4.3×10 kg Amount of matter converted into energy by the Sun each second
6×10 kg Great Pyramid of Giza
10 6×10 kg Amount of concrete in the Three Gorges Dam, the world's largest concrete structure
10 ~1×10 kg The mass of a primordial black hole with an evaporation time equal to the age of the universe
2×10 kg Amount of water stored in London storage reservoirs (0.2 km)
6×10 kg Total mass of the world's human population
5×10 kg Total biomass of Antarctic krill, one of the most plentiful animal species on the planet in terms of biomass

10 to 10 kg

Factor (kg) Value Item
10
petagram (Pg)
0.8–2.1×10 kg Global biomass of fish
4×10 kg Global annual human food production
4×10 kg World crude oil production in 2009 (3,843 Mt)
5.5×10 kg A teaspoon (5 ml) of neutron star material (5000 million tonnes)
10 1×10 kg Mass of comet 67P/Churyumov–Gerasimenko
4×10 kg Global annual human carbon dioxide emission
10 1.05×10 kg Global net primary production – the total mass of carbon fixed in organic compounds by photosynthesis each year on Earth
7.2×10 kg Total carbon stored in Earth's atmosphere
10
exagram (Eg)
2.0×10 kg Total carbon stored in the terrestrial biosphere
3.5×10 kg Total carbon stored in coal deposits worldwide
10 1×10 kg 951 Gaspra, the first asteroid ever to be closely approached by a spacecraft (rough estimate)
1×10 kg Rough estimate of the total carbon content of all organisms on Earth.
3×10 kg Rough estimate of everything produced by the human species.
3.8×10 kg Total carbon stored in the oceans.
10 1.6×10 kg Prometheus, a shepherd satellite for the inner edge of Saturn's F Ring

10 to 10 kg

Factor (kg) Value Item
10
zettagram (Zg)
5.1×10 kg Earth's atmosphere
5.6×10 kg Hyperion, a moon of Saturn
10 3×10 kg 3 Juno, one of the larger asteroids in the asteroid belt
3×10 kg The rings of Saturn
10 9.4×10 kg Ceres, dwarf planet within the asteroid belt
10
yottagram (Yg)
1.4×10 kg Earth's oceans
1.5×10 kg Charon, the largest moon of Pluto
2.9–3.7×10 kg The asteroid belt
10 1.3×10 kg Pluto
2.1×10 kg Triton, largest moon of Neptune
7.3×10 kg Earth's Moon
10 1.3×10 kg Titan, largest moon of Saturn
1.5×10 kg Ganymede, largest moon of Jupiter
3.3×10 kg Mercury
6.4×10 kg Mars

10 to 10 kg

Jupiter is the most massive planet in the Solar System.
Factor (kg) Value Item
10
ronnagram (Rg)
4.9×10 kg Venus
6.0×10 kg Earth
10 3×10 kg Oort cloud
8.7×10 kg Uranus
10 1.0×10 kg Neptune
5.7×10 kg Saturn
10
quettagram (Qg)
1.9×10 kg Jupiter
10 2–14×10 kg Brown dwarfs (approximate)
10 3×10 kg Barnard's Star, a nearby red dwarf

10 to 10 kg

Factor (kg) Value Item
10 2×10 kg The Sun (one solar mass or M = 1.989×10 kg)
2.8×10 kg Chandrasekhar limit (1.4 M)
10 4×10 kg Betelgeuse, a red supergiant star (20 M)
10 4–7×10 kg R136a1, the most massive of known stars (230 to 345 M)
6–8×10 kg Hyades star cluster (300 to 400 M)
10 1.6×10 kg Pleiades star cluster (800 M)
10
10 ~10 kg Typical globular cluster in the Milky Way (overall range: 3×10 to 4×10 M)
2×10 kg Low end of mass range for giant molecular clouds (1×10 to 1×10 M)
7.3×10 kg Jeans mass of a giant molecular cloud at 100 K and density 30 atoms per cubic centimeter;
possible example: Orion molecular cloud complex

10 to 10 kg

Factor (kg) Value Item
10 1.79×10 kg The entire Carina complex.
2.4×10 kg The Gould Belt of stars, including the Sun (1.2×10 M)
7–8×10 kg The supermassive black hole at the center of the Milky Way, associated with the radio source Sagittarius A* (3.7±0.2×10 M)
8×10 kg Omega centauri, the largest globular cluster in the Milky Way, containing approximately 10 million stars.
10    
10    
10    
10    
10 1.98×10 kg Phoenix A, the largest supermassive black hole, weighing 100 billion solar masses (1×10 M)
4×10 kg Visible mass of the Milky Way galaxy

The most massive things: 10 kg and greater

Factor (kg) Value Item
10 1.2×10 kg Milky Way galaxy (5.8×10 M)
2–3×10 kg Local Group of galaxies, including the Milky Way (1.29±0.14×10 M)
10 5.37×10 kg ESO 146-5, the heaviest known galaxy in the universe
10    
10 1–2×10 kg Local or Virgo Supercluster of galaxies, including the Local Group (1×10 M)
10    
10 2×10 kg Laniakea Supercluster of galaxies, which encompasses the Virgo supercluster
10 2×10 kg Pisces–Cetus Supercluster Complex, a galaxy filament that includes the Laniakea Supercluster.
10 4×10 kg Hercules–Corona Borealis Great Wall, the largest structure in the known universe
10    
10    
10 4.4506×10 kg Mass of the observable universe as estimated by NASA
1.4×10 kg Mass of the observable universe as estimated by the U.S. National Solar Observatory

See also

Notes

  1. Criterion: A combined total of at least 250,000 Google hits on both the modern spelling (‑gram) and the dated British spelling (‑gramme). 
  2. Zyla, P.; et al. (Particle Data Group) (2020). "Review of Particle Physics: Gauge and Higgs bosons" (PDF). Archived (PDF) from the original on 30 September 2020. {{cite journal}}: Cite journal requires |journal= (help)
  3. Fixsen, D. J. (2009). "The Temperature of the Cosmic Microwave Background". The Astrophysical Journal. 707 (2): 916–920. arXiv:0911.1955. Bibcode:2009ApJ...707..916F. doi:10.1088/0004-637X/707/2/916. S2CID 119217397.
  4. "Conversion from eV to kg". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 19 October 2011.
  5. "The most sensitive analysis on the neutrino mass is compatible with a neutrino mass of zero. Considering its uncertainties this value corresponds to an upper limit on the electron neutrino mass of m<2.2 eV/c (95% Confidence Level)" The Mainz Neutrino Mass Experiment Archived 2016-03-03 at the Wayback Machine
  6. "CODATA Value: electron mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 21 August 2011.
  7. K. Nakamura; Particle Data Group (2011). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'" (PDF). Particle Data Group. Retrieved 8 August 2011.
  8. "CODATA Value: muon mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 23 August 2011.
  9. "CODATA Value: proton mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 23 August 2011.
  10. "CODATA Value: proton mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 23 August 2011.
  11. "CODATA Value: neutron mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 23 August 2011.
  12. "CODATA Value: neutron mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 23 August 2011.
  13. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl:1854/LU-685594. S2CID 227119789. Archived from the original on 12 July 2012.
  14. K. Nakamura; Particle Data Group (2011). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'" (PDF). Particle Data Group. Retrieved 8 August 2011.
  15. "Ubiquitin". Channel Proteomes. Archived from the original on 4 October 2015. Retrieved 12 October 2011.
  16. Ron Milo. "How big is the "average" protein?" (PDF). Archived from the original (PDF) on 8 August 2011. Retrieved 13 October 2011.
  17. Van Beekvelt MC; Colier WN; Wevers RA; Van Engelen BG (February 2001). "Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle". J Appl Physiol. 90 (2): 511–519. doi:10.1152/jappl.2001.90.2.511. ISSN 8750-7587. PMID 11160049. S2CID 15468862.
  18. From attograms to Daltons: Cornell NEMS device detects the mass of a single DNA molecule . Retrieved 2010-10-14
  19. ^ "Eukaryotic Ribosome". ETH Zurich. Archived from the original on 11 September 2011. Retrieved 9 October 2011.
  20. Bockstahler, L.; Kaesberg, P. (1962). "The Molecular Weight and Other Biophysical Properties of Bromegrass Mosaic Virus". Biophysical Journal. 2 (1): 1–9. Bibcode:1962BpJ.....2....1B. doi:10.1016/S0006-3495(62)86836-2. PMC 1366384. PMID 19431313.
  21. "Atomic mass of synaptic vesicle – Rat Rattus". BioNumbers. Retrieved 9 October 2011.
  22. "Molecular weight – Tobacco mosaic virus (TMV) – BNID 105958". BioNumbers. Retrieved 9 October 2011.
  23. Rout, M. P.; Blobel, G. (1993). "Isolation of the yeast nuclear pore complex". The Journal of Cell Biology. 123 (4): 771–783. doi:10.1083/jcb.123.4.771. PMC 2200146. PMID 8227139.
  24. Liu, H.; Jin, L.; Koh, S. B. S.; Atanasov, I.; Schein, S.; Wu, L.; Zhou, Z. H. (2010). "Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks" (PDF). Science. 329 (5995): 1038–1043. Bibcode:2010Sci...329.1038L. doi:10.1126/science.1187433. PMC 3412078. PMID 20798312.
  25. "Virus diameter of HIV-1 - HIV". BioNumbers. Retrieved 1 November 2011.
  26. Calculated : volume = 4/3 × π × (126e−9 m / 2) = 1.05e−21 m. Assume density = 1 g/cm => mass = 1.05e−21 m × 1e3 kg/m = 1.05e−18 kg
  27. Frederick R. Blattner; Guy Plunkett III; et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science. 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503.
  28. "Mass of virion - Virus Vaccinia". BioNumbers. Retrieved 1 November 2011.
  29. "Conversion from J to kg". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 23 August 2011.
  30. "Prochlorococcus marinus MIT 9313 - Home". Joint Genome Institute. Archived from the original on 20 May 2015. Retrieved 1 November 2011.
  31. "Size (diameter) of most abundant cyanobacteri - Prochlorococcus - BNID 101520". BioNumbers. Retrieved 1 November 2011.
  32. ^ Mass calculated from volume assuming density of 1 g/mL
  33. "E. coli Statistics". The CyberCell Database. Archived from the original on 18 March 2012. Retrieved 11 September 2011.
  34. M. R. Curry, J. D. Millar, S. M. Tamuli & P. F. Watson, "Surface Area & Volume Measurements for Ram & Human Spermatozoa," Biology of Reproduction, 55, 6 (1996‑12‑01): 1325–32.
  35. Ron Milo. "How big is a yeast cell" (PDF). Archived from the original (PDF) on 8 August 2011. Retrieved 9 October 2011.
  36. ""Rule of thumb" for cell mass". BioNumbers. Retrieved 9 October 2011.
  37. "Cell dry weight - Green algae Dunaliella salina". BioNumbers. Retrieved 14 October 2011.
  38. "A quick introduction to elements of biology - cells, molecules, genes, functional genomics, microarrays". European Bioinformatics Institute. if we estimate the average weight of a human cell as about 10^-9 g
  39. "Measured HeLa cell mass". BioNumbers. Retrieved 9 October 2011.
  40. "Estimated HeLa cell mass". BioNumbers. Retrieved 9 October 2011.
  41. Phillips, Kevin G.; Jacques, Steven L.; McCarty, Owen J. T. (13 September 2012). "Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/physrevlett.109.118105. PMC 3621783. PMID 23005682.
  42. Schäppi, G. F.; Suphioglu, C.; Taylor, P. E.; Knox, R. B. (1997). "Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere". Journal of Allergy and Clinical Immunology. 100 (5): 656–661. doi:10.1016/S0091-6749(97)70170-2. PMID 9389296. "the total pollen grain mass of approximately 7.85 ng"
  43. Fonseca, A. E.; Westgate, M. E.; Grass, L.; Dornbos, J. (2003). "Tassel Morphology as an Indicator of Potential Pollen Production in Maize". Crop Management. 2: 1–15. doi:10.1094/CM-2003-0804-01-RS. Archived from the original on 31 March 2013. Retrieved 28 August 2015. "The dry weight of individual pollen grains has been estimated at 250 ng"
  44. "Volume of human oocyte - Human Homo sapiens". BioNumbers. Retrieved 1 November 2011.
  45. "Dietary Supplement Fact Sheet: Vitamin B12". Office of Dietary Supplements. Retrieved 2 October 2011.
  46. "Dietary Supplement Fact Sheet: Vitamin D". Office of Dietary Supplements. Retrieved 2 October 2011.
  47. Report to the CGPM, 14th meeting of the Consultative Committee for Units (CCU), April 2001, 2. (ii); General Conference on Weights and Measures, 22nd Meeting, October 2003, which stated "The kilogram is in need of a new definition because the mass of the prototype is known to vary by several parts in 10 over periods of time of the order of a month ..." (3.2 MB ZIP file, here).
  48. "CODATA Value: Planck mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 30 September 2011.
  49. "Weigh An Eyelash". National Semiconductor. Archived from the original on 7 February 2012. Retrieved 2 October 2011.
  50. "Dietary Supplement Fact Sheet: Iodine". Office of Dietary Supplements. Retrieved 2 October 2011.
  51. "Mean dry mass (male) - Fruit fly". BioNumbers. Retrieved 14 October 2011.
  52. "Mean dry mass (female) - Fruit fly". BioNumbers. Retrieved 14 October 2011.
  53. "Frequently Asked Questions". American Mosquito Control Association. Archived from the original on 18 September 2011. Retrieved 23 August 2011. Smaller species found around houses commonly weigh about 2.5 milligrams.
  54. "Metric Mass (Weight)". Retrieved 19 September 2019.
  55. "Mass". 8 July 2017. Retrieved 19 September 2019.
  56. Quartz has a density of 2.65. Mass = Volume × Density = (4/3 × π × (1e−3 m)) × (2.65 × 1e3 kg/m) = 1.1e−5 kg.
  57. Price, G. M. (1961). "Some Aspects of Amino Acid Metabolism in the Adult Housefly, Musca domestica". Biochem. J. 80 (2): 420–8. doi:10.1042/bj0800420. PMC 1244018. PMID 16748919.
  58. "Caffeine content for coffee, tea, soda and more". Mayo Clinic. Retrieved 23 August 2011.
  59. ^ "Appendix B8—Factors for Units Listed Alphabetically". NIST. 2 July 2009. Retrieved 29 October 2011.
  60. "Mass, Weight, Density or Specific Gravity of Water at Various Temperatures". SiMetric. Retrieved 13 December 2011.
  61. "FAQ Library". U.S. Bureau of Engraving and Printing. Archived from the original on 29 September 2011. Retrieved 21 August 2011.
  62. "FoodData Central". fdc.nal.usda.gov. Retrieved 22 April 2019.
  63. "Denominations and technical specifications of Euro coins". Retrieved 22 June 2013. weight (g): 7.5
  64. "Coin specifications". United States Mint. Archived from the original on 18 February 2015. Retrieved 23 August 2011.
  65. "the 1-dollar coin - Royal Canadian Mint". Royal Canadian Mint. Retrieved 24 May 2014.
  66. "Alcohol and Public Health: Frequently Asked Questions". CDC. 29 March 2018. Retrieved 23 August 2011.
  67. "Biomethodology of the Mouse". Animal Research, The University of Iowa. Archived from the original on 18 January 2012. Retrieved 17 October 2011.
  68. Calculated: 1e6 tons of TNT-equivalent × 4.184e9 J/ton of TNT-equivalent × 1.1e−17 kg of mass-equivalent/J = 4.7e−2 kg of mass-equivalent
  69. "Oranges, raw, with peel (NDB No. 09205 and 09200)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 18 October 2011.
  70. Christina Lee, "Mass of a Baseball", The Physics Factbook, 1999. Retrieved 2018-07-04
  71. ^ "Water - Density and Specific Weight". The Engineering Tool Box.
  72. "Chihuahua Weight Chart". Retrieved 14 December 2011. 907 g ... 2722 g
  73. "Laptop Buyer's Guide". About.com. Archived from the original on 2 May 2015. Retrieved 14 December 2011. 2.0 lbs ... > 6 lbs
  74. "Baby birth weight Information". Archived from the original on 29 November 2011. Retrieved 14 December 2011. 2500 g ... 4000 g
  75. ^ "Shot Put - Introduction". IAAF. Retrieved 12 December 2011.
  76. Mattern, Michelle Y.; McLennan, Deborah A. (2000). "Phylogeny and Speciation of Felids". Cladistics. 16 (2): 232–253. doi:10.1111/j.1096-0031.2000.tb00354.x. PMID 34902955. S2CID 85043293.
  77. "Dog Services - Adoptable Dogs". Archived from the original on 7 July 2013. Retrieved 2 July 2013. medium (30lbs to 60lbs)
  78. "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011. 70 kg
  79. Nowell, Kristin; Jackson, Peter (1996). "Panthera Leo" (PDF). Wild Cats: Status Survey and Conservation Action Plan. Gland, Switzerland: IUCN/SSC Cat Specialist Group. p. 17. ISBN 978-2-8317-0045-8. adult males (>4 years) 181 kg (n=14) and females 126 kg (n=25)
  80. "GRAND PIANO GUIDE TO STEINWAY AND INDUSTRY STANDARD SIZES". Bluebook of Pianos. Retrieved 13 December 2011. 540 lbs ... 990 lbs
  81. Calculated: 540 lbs × 0.4536 kg/lb = 240 kg. 990 lb × 0.4536 kg/lb = 450 kg.
  82. "Cow (Cattle) breed comparisons". Archived from the original on 9 December 2015. Retrieved 14 December 2011.
  83. Jennifer Johnson. "Lecture 22: Extreme Stars: White Dwarfs & Neutron Stars". Ohio State Department of Astronomy. Retrieved 17 October 2011.
  84. Using the quoted density of 1e5 to 1e8 kg/m for white dwarf material, 1 teaspoon = 5mL = 5e−3 m has a calculated mass of: Low end: 5e−3 m × 1e5 kg/m = 5e2 kg High end: 5e−3 m × 1e8 kg/m = 5e5 kg
  85. "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2016" (PDF). United States Environmental Protection Agency. EPA-420-R-16-010: 28, 30. November 2016. Retrieved 2 November 2017.
  86. Norton, C.A. Spinage; illustrated by Larry (1994). Elephants. London: T & A D Poyser. ISBN 9780856610882.{{cite book}}: CS1 maint: multiple names: authors list (link)
  87. "Solar System Exploration: Hubble Space Telescope". NASA. Archived from the original on 19 June 2015. Retrieved 23 August 2011.
  88. Ward, Rowland (1935). Records of Big Game (10th ed.). London.{{cite book}}: CS1 maint: location missing publisher (link)
  89. "The Story of Big Ben". Whitechapel Bell Foundry. Retrieved 17 October 2011.
  90. Kennedy Jr., T.R. (15 February 1946). "Electronic Computer Flashes Answers, May Speed Engineering". The New York Times. No. 2–15–1946. Retrieved 2 November 2017.
  91. "Council Directive 96/53/EC of 25 July 1996" (PDF). 17 September 1996. p. 12. Retrieved 18 October 2011.
  92. Meteoritical Bulletin Database: Hoba
  93. Mazzetta, Gerardo V.; Christiansen, Per; Fariña, Richard A. (2004). "Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs" (PDF). Historical Biology. 16 (2–4): 71–83. Bibcode:2004HBio...16...71M. CiteSeerX 10.1.1.694.1650. doi:10.1080/08912960410001715132. S2CID 56028251. Retrieved 23 January 2009.
  94. "What is the biggest animal ever to exist on Earth?". How Stuff Works. 25 July 2001. Retrieved 17 October 2011.
  95. "International Space Station: The ISS to Date". NASA. Archived from the original on 11 June 2015. Retrieved 23 August 2011.
  96. Greg Goebel. "The Antonov Giants: An-22, An-124, & An-225". Air Vectors. Archived from the original on 29 June 2011. Retrieved 17 October 2011.
  97. Fry, Walter; White, John Roberts (1942). Big Trees. Palo Alto, California: Stanford University Press.
  98. "Space Shuttle Basics". NASA. Archived from the original on 17 August 2000. Retrieved 24 August 2011.
  99. David Hershey. "Re: What is the biggest tree in the world?". MadSci Network. Retrieved 17 October 2011.
  100. "The US Navy". US Navy. Retrieved 17 December 2011.
  101. "Darjeeling Tea: Questions and Answers". Darjeeling Tea Association. Archived from the original on 5 September 2011. Retrieved 11 September 2011.
  102. "THE 66,000 TON MYTH". Mark Chirnside. Retrieved 24 August 2011.
  103. "Hamersley Freight Line - Railway Technology". Railway Technology. Retrieved 17 October 2011.
  104. "Knock Nevis - The world's largest ship ever". Container-Transportation. Retrieved 19 October 2011.
  105. "Heaviest building". Guinness World Records. Retrieved 13 March 2015.
  106. "Is the Sun Shrinking?". Stanford Solar Center. Retrieved 24 August 2011.
  107. Levy, Janey (2005). The Great Pyramid of Giza: Measuring Length, Area, Volume, and Angles. Rosen Publishing Group. ISBN 978-1-4042-6059-7.
  108. Richard R. Wertz. "The Three Gorges Dam Project". Retrieved 17 October 2011.
  109. "Density of Concrete". The Physics Factbook. Retrieved 17 October 2011.
  110. Andrew Hamilton. "Hawking Radiation". University of Colorado at Boulder. Archived from the original on 3 February 2007. Retrieved 17 October 2011.
  111. Chris Birks; Mike Owen; Brian Arkell (2001). "London's Water Resources: Threat or Opportunity". Area. 33 (1): 95–97. JSTOR 20004131.
  112. "Biomasse: Die Menschheit wiegt so viel wie alle Termiten".
  113. Stephen Nicol & Yoshinari Endo (1997). Krill Fisheries of the World. Fisheries Technical Paper 367. Food and Agriculture Organization. ISBN 978-92-5-104012-6.
  114. Wilson, R. W.; Millero, F. J.; Taylor, J. R.; Walsh, P. J.; Christensen, V.; Jennings, S.; Grosell, M. (2009). "Contribution of Fish to the Marine Inorganic Carbon Cycle". Science. 323 (5912): 359–362. Bibcode:2009Sci...323..359W. doi:10.1126/science.1157972. PMID 19150840. S2CID 36321414.
  115. "World Environment Day - Food Waste Facts". Archived from the original on 2 April 2015. Retrieved 13 March 2015.
  116. "Key World Energy Statistics 2010". International Energy Agency. 2010. p. 10. Archived from the original (PDF) on 30 April 2015. Retrieved 13 September 2011.
  117. The average density of material in a neutron star of radius 10 km is 1.1×10 kg cm. Therefore, 5 ml of such material is 5.5×10 kg, or 5 500 000 000 t. This is about 15 times the total mass of the human world population. Alternatively, 5 ml from a neutron star of radius 20 km radius (average density 8.35×10 kg cm) has a mass of about 400 Mt, or about the mass of all humans.
  118. Pätzold, M.; Andert, T.; Hahn, M.; Asmar, S. W.; Barriot, J.-P.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Grün, E.; Weissman, P. R.; Sierks, H.; Jorda, L.; Gaskell, R.; Preusker, F.; Scholten, F. (4 February 2016). "A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field". Nature. 530 (7588): 63–65. Bibcode:2016Natur.530...63P. doi:10.1038/nature16535. PMID 26842054. S2CID 4470894.
  119. Amos, Jonathan (18 December 2014). "BBC News - Carbon dioxide satellite mission returns first global maps". BBC News. Retrieved 13 March 2015.
  120. "Carbon dioxide monitoring rocket blasts off – News – ABC Environment (Australian Broadcasting Corporation)". Australian Broadcasting Corporation. Retrieved 13 March 2015.
  121. Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. (1998). "Primary production of the Biosphere: Integrating Terrestrial and Oceanic Components". Science (Submitted manuscript). 281 (5374): 237–240. Bibcode:1998Sci...281..237F. doi:10.1126/science.281.5374.237. PMID 9657713.
  122. "Total carbon stored in the atmosphere". BioNumbers. Retrieved 19 October 2011.
  123. "Total carbon stored in the terrestrial biosphere". BioNumbers. Retrieved 19 October 2011.
  124. "Total carbon stored in coal deposits worldwide". BioNumbers. Retrieved 19 October 2011.
  125. "Asteroid Fact Sheet". NASA. Retrieved 15 October 2011.
  126. William B. Whitman; David C. Coleman; William J. Wiebe (1998). "Prokaryotes: The unseen majority". Proceedings of the National Academy of Sciences of the United States of America. 95 (12): 6578–6583. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863. PMID 9618454.
  127. Zalasiewicz, Jan; Williams, Mark; Waters, Colin N.; Barnosky, Anthony D.; Palmesino, John; Rönnskog, Ann-Sofi; Edgeworth, Matt; Neal, Cath; Cearreta, Alejandro; Ellis, Erle C.; Grinevald, Jacques; Haff, Peter; Ivar Do Sul, Juliana A.; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, John R.; Odada, Eric; Oreskes, Naomi; Price, Simon James; Revkin, Andrew; Steffen, Will; Summerhayes, Colin; Vidas, Davor; Wing, Scott; Wolfe, Alexander P. (2017). "Scale and diversity of the physical technosphere: A geological perspective" (PDF). The Anthropocene Review. 4 (1): 9–22. Bibcode:2017AntRv...4....9Z. doi:10.1177/2053019616677743. hdl:11250/2553087. S2CID 55431583.
  128. "Total carbon stored in the oceans (mostly inorganic)". BioNumbers. Retrieved 19 October 2011.
  129. ^ Thomas, P. C. (July 2010). "Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission" (PDF). Icarus. 208 (1): 395–401. Bibcode:2010Icar..208..395T. doi:10.1016/j.icarus.2010.01.025. Archived from the original (PDF) on 23 December 2018. Retrieved 4 September 2015.
  130. Trenberth, Kevin E.; Smith, Lesley. "The Mass of the Atmosphere: a Constraint on Global Analyses". National Center for Atmospheric Research. Archived from the original on 25 July 2013. Retrieved 9 September 2011.
  131. Jim Baer (2010). "Recent Asteroid Mass Determinations". Personal Website. Archived from the original on 2 July 2013. Retrieved 16 October 2011.
  132. Brainerd, Jerome James. "Saturn's Rings". The Astrophysics Spectator. Retrieved 9 September 2011.
  133. Carry, B.; Dumas, C.; Fulchignoni, M.; Merline, W. J.; Berthier, J.; Hestroffer, D.; Fusco, T.; Tamblyn, P. (2008). "Near-infrared mapping and physical properties of the dwarf-planet Ceres" (PDF). Astronomy and Astrophysics. 478 (1): 235–244. arXiv:0711.1152. Bibcode:2008A&A...478..235C. doi:10.1051/0004-6361:20078166. S2CID 6723533. Archived from the original (PDF) on 30 May 2008.
  134. "Mass of the Oceans". The Physics Factbook. Retrieved 9 September 2011.
  135. ^ Buie, Marc W.; Grundy, William M.; Young, Eliot F.; Young, Leslie A.; Stern, S. Alan (2006). "Orbits and Photometry of Pluto's Satellites: Charon, S/2005 P1, and S/2005 P2". The Astronomical Journal. 132 (1): 290–298. arXiv:astro-ph/0512491. Bibcode:2006AJ....132..290B. doi:10.1086/504422. S2CID 119386667.
  136. Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. (July 2002). "Hidden Mass in the Asteroid Belt". Icarus. 158 (1): 98–105. Bibcode:2002Icar..158...98K. doi:10.1006/icar.2002.6837.
  137. "Solar System Exploration: Triton: Overview". Solar System Exploration. NASA. Archived from the original on 15 October 2011. Retrieved 22 September 2011.
  138. "Earth's Moon: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 24 February 2004. Retrieved 13 October 2011.
  139. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A.; Meek, M. C.; Parcher, D.; Pelletier, F. J.; Owen Jr., W. M.; Roth, D. C.; Roundhill, I. M.; Stauch, J. R. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal. 132 (6): 2520–2526. Bibcode:2006AJ....132.2520J. doi:10.1086/508812.
  140. Showman, A. P.; Malhotra, R. (1999). "The Galilean Satellites" (PDF). Science. 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID 10506564. Archived from the original (PDF) on 14 May 2011. Retrieved 28 August 2015.
  141. "Mercury: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 13 July 2012. Retrieved 22 September 2011.
  142. "Mars: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 15 December 2003. Retrieved 22 September 2011.
  143. "Venus: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 16 December 2003. Retrieved 22 September 2011.
  144. "Earth: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 16 December 2003. Retrieved 29 September 2011.
  145. Weissman, Paul R (1983). "The mass of the Oort cloud". Astronomy and Astrophysics. 118 (1): 90–94. Bibcode:1983A&A...118...90W.
  146. "Uranus: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 14 December 2003. Retrieved 22 September 2011.
  147. "Neptune: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 15 December 2003. Retrieved 22 September 2011.
  148. "Saturn: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 24 February 2004. Retrieved 22 September 2011.
  149. "Jupiter: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 15 December 2003. Retrieved 22 September 2011.
  150. Boss, Alan (3 April 2001). "Are They Planets or What?". Carnegie Institution of Washington. Archived from the original on 28 September 2006. Retrieved 8 June 2006.
  151. Dawson, P. C.; De Robertis, M. M. (2004). "Barnard's Star and the M Dwarf Temperature Scale". The Astronomical Journal. 127 (5): 2909. Bibcode:2004AJ....127.2909D. doi:10.1086/383289.
  152. "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
  153. p. 55, How A Supernova Explodes, Hans A. Bethe and Gerald Brown, pp. 51–62 in Formation And Evolution of Black Holes in the Galaxy: Selected Papers with Commentary, Hans Albrecht Bethe, Gerald Edward Brown, and Chang-Hwan Lee, River Edge, NJ: World Scientific: 2003. ISBN 981-238-250-X.
  154. Mazzali, P. A.; Röpke, F. K.; Benetti, S.; Hillebrandt, W. (2007). "A Common Explosion Mechanism for Type Ia Supernovae". Science (PDF). 315 (5813): 825–828. arXiv:astro-ph/0702351v1. Bibcode:2007Sci...315..825M. doi:10.1126/science.1136259. PMID 17289993. S2CID 16408991.
  155. Kaler, Jim. "Betelgeuse" Archived 2008-12-16 at the Wayback Machine (2008). Stars. University of Illinois. Retrieved on 2009-02-08.
  156. Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; et al. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. S2CID 53001712.
  157. The Astrophysics Spectator: Open Star Clusters. Retrieved 2008-09-15
  158. Adams, J. D.; Stauffer, J. R.; Monet, D. G.; Skrutskie, M. F.; Beichman, C. A. (2001). "The Mass and Structure of the Pleiades Star Cluster from 2MASS". The Astronomical Journal. 121 (4): 2053. arXiv:astro-ph/0101139. Bibcode:2001AJ....121.2053A. doi:10.1086/319965. S2CID 17994583.
  159. "Globular cluster parameters". Oleg Y. Gnedin and Jeremia P. Ostriker. Archived from the original on 23 May 2011. Retrieved 9 September 2011.
  160. "Cool Cosmos". Infrared Processing and Analysis Center. Retrieved 16 October 2011.
  161. "Milky Way Galaxy: Molecular Clouds". The Astrophysics Spectator. Retrieved 16 October 2011.
  162. "Molecular Clouds". The Astrophysics Spectator. Issue 5.02. 30 January 2008. Archived from the original on 4 February 2008. Retrieved 15 September 2008. A cool cloud with a temperature of 100K and a density of 30 hydrogen atoms per cubic centimeter has a Jeans length of approximately 50 parsecs and a Jeans mass of approximately 365,000 solar masses.
  163. Olano, C. A. (1982). "On a model of local gas related to Gould's belt". Astronomy and Astrophysics. 112 (2): 195–208. Bibcode:1982A&A...112..195O.
  164. Ghez, A. M.; Salim, S.; Hornstein, S. D.; Tanner, A.; Lu, J. R.; Morris, M.; Becklin, E. E.; Duchene, G. (2005). "Stellar Orbits around the Galactic Center Black Hole". The Astrophysical Journal. 620 (2): 744–757. arXiv:astro-ph/0306130. Bibcode:2005ApJ...620..744G. doi:10.1086/427175. S2CID 8656531.
  165. Jim Brau. "The Milky Way Galaxy". Retrieved 12 September 2011. total mass (within 15 kpc) = 2 x 10^11 solar masses
  166. ^ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6. S2CID 120973010.
  167. Durrer, R., & Parnovsky, S. (2023). Catastrophic Dark Matter Particle Capture, 11. https://arxiv.org/pdf/2208.08843.pdf
  168. Einasto, M.; Saar, E.; Liivamägi, L. J.; Einasto, J.; et al. (2007). "The richest superclusters: I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037. S2CID 15004251.
  169. "Mass, Size, and Density of the Universe".

External links

Orders of magnitude
Quantity
See also
Related
Portals: Categories: