Misplaced Pages

2-Mercaptopyridine

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
2-Mercaptopyridine
2-Mercaptopyridine molecule (thiol form)
2-Mercaptopyridine molecule (thione form)
Names
Preferred IUPAC name Pyridine-2-thiol
Other names 2-Thiopyridine
2-Thiopyridone
Pyrid-2-thione
2-Pyridyl mercaptan
2-Pyridinethiol
2-Pyridinethione
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 105787
ChEBI
ChEMBL
ChemSpider
DrugBank
EC Number
  • 220-131-9
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C5H5NS/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)Key: WHMDPDGBKYUEMW-UHFFFAOYSA-N
  • InChI=1/C5H5NS/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)Key: WHMDPDGBKYUEMW-UHFFFAOYAE
SMILES
  • S=C1/C=C\C=C/N1
Properties
Chemical formula C5H5NS
Molar mass 111.16 g·mol
Appearance yellow crystalline powder
Melting point 128 to 130 °C (262 to 266 °F; 401 to 403 K)
Solubility in water 50 g/L
Hazards
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H315, H319, H335
Precautionary statements P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

2-Mercaptopyridine is an organosulfur compound with the formula HSC5H4N. This yellow crystalline solid is a derivative of pyridine. The compound and its derivatives serve primarily as acylating agents. A few of 2-mercaptopyridine's other uses include serving as a protecting group for amines and imides as well as forming a selective reducing agent. 2-Mercaptopyridine oxidizes to ].

Preparation

2-Mercaptopyridine was originally synthesized in 1931 by heating 2-chloropyridine with calcium hydrogen sulfide.

ClC5H4N + Ca(SH)2 → HSC5H4N + Ca(SH)Cl

A more convenient route to 2-mercaptopyridine is the reaction of 2-chloropyridine and thiourea in ethanol and aqueous ammonia.

2-Mercaptopyridine derivatives can also be generated from precursors lacking preformed pyridine rings. It arises for example in the condensation of α,β-unsaturated ketones, malononitrile, and 4-methylbenzenethiol under microwave irradiation. The reaction is conducted with a base catalyst.

Structure and properties

Similar in nature to 2-hydroxypyridine, 2-mercaptopyridine converts to the thione (or more accurately thioamide) tautomer. The preferred form is dependent on temperature, concentration, and solvent. The thiol is favored at lower temperatures, lower concentrations, and in less polar solvents. 2-Mercaptopyridine is favored in dilute solutions and in solvents capable of hydrogen bonding. These solvents will compete with other 2-mercaptopyridines to prevent self association.

The association constant for this reaction between mutual 2-mercaptopyridines is described below. The ratio is of monosulfide to disulfide in chloroform.

Kassociation = (2.7±0.5)x10

Reactions

2-Mercaptopyridine oxidizes to 2,2'-dipyridyl disulfide. As amines are good catalysts for the oxidation of thiols to disulfides, this process is autocatalytic.

2-Mercaptopyridine can also be prepared by hydride reduction of 2,2'-dipyridyl disulfide.

C5H4NSSC5H4N + 2H → 2HSC5H4N

Main reactions

2-Mercaptopyridine and the disulfide are chelating ligands. 2-mercaptopyridine forms the indium(III) complex In(PyS)3 complexes in supercritical carbon dioxide. 2-Mercaptopyridine may also be used to coat porous media in order to purify plasmid DNA of impurities such as RNA and proteins at relatively quick timescales to similar methods. 2-Mercaptopyridine is also used acylate phenols, amines, and carboxylic acids.

Another application lies in metal-free catalysis: 2-mercaptopyridine can be used as a catalyst for isodesmic C-H borylation of heteroarenes. The particular pattern of Lewis base and Brønsted acid allows to cleave boron-carbons bonds and then form a new boron-carbon bond by lewis pair mediated C-H activation.

References

  1. ^ Adams, Edward J.; Skrydstrup, Troels; Lindsay, Karl B.; Skrydstrup, Troels; Lindsay, Karl B. (2007). "2-Pyridinethiol". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rp286.pub3. ISBN 978-0471936237.
  2. Räth, C.; Binz, A.; Räth, C. (1931). "Mercaptane und Sulfosäuren des Pyridins. XII. Mitteilung über Derivate des Pyridins". Justus Liebig's Annalen der Chemie. 487: 105–119. doi:10.1002/jlac.19314870107.
  3. Jones, R. A.; Katritzky, A. R. (1958). "721. Tautomeric pyridines. Part I. Pyrid-2- and -4-thione". Journal of the Chemical Society (Resumed): 3610. doi:10.1039/JR9580003610.
  4. Wang, Xing-Han; Cao, Xu-Dong; Tu, Shu-Jiang; Zhang, Xiao-Hong; Hao, Wen-Juan; Yan, Shu; Wu, Shan-Shan; Han, Zheng-Guo; Shi, Feng (2009). "An efficient and direct synthesis of 2-thiopyridinesviamicrowave-assisted three-component reaction". Journal of Heterocyclic Chemistry. 46 (5): 886. doi:10.1002/jhet.161.
  5. Moran, Damian; Sukcharoenphon, Kengkaj; Puchta, Ralph; Schaefer, Henry F.; Schleyer, Paul v. R.; Hoff, Carl D. (2002). "2-Pyridinethiol/2-Pyridinethione Tautomeric Equilibrium. A Comparative Experimental and Computational Study". The Journal of Organic Chemistry. 67 (25): 9061–9. doi:10.1021/jo0263768. PMID 12467429.
  6. ^ Beak, Peter; Covington, Johnny B.; Smith, Stanley G.; White, J. Matthew; Zeigler, John M. (1980). "Displacement of protomeric equilibriums by self-association: hydroxypyridine-pyridone and mercaptopyridine-thiopyridone isomer pairs". The Journal of Organic Chemistry. 45 (8): 1354. doi:10.1021/jo01296a002.
  7. Chou, Wei-Lung; Yang, Kai-Chiang (2008). "Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution". Journal of Hazardous Materials. 154 (1–3): 498–505. doi:10.1016/j.jhazmat.2007.10.052. PMID 18054158.
  8. Li, Yuan; Dong, Xiao-Yan; Sun, Yan (2007). "Biporous polymeric microspheres coupled with mercaptopyridine for rapid chromatographic purification of plasmid DNA". Journal of Applied Polymer Science. 104 (4): 2205. doi:10.1002/app.24417.
  9. Rochette, Étienne; Desrosiers, Vincent; Soltani, Yashar; Fontaine, Frédéric-Georges (2019-08-07). "Isodesmic C–H Borylation: Perspectives and Proof of Concept of Transfer Borylation Catalysis". Journal of the American Chemical Society. 141 (31): 12305–12311. doi:10.1021/jacs.9b04305. ISSN 0002-7863. PMID 31283206. S2CID 195844973.
Categories: