Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
The ACADVL gene contains 20 exons, and is about 5.4 kb long. VLCAD has interesting gene structure in humans, in that is located in a head-to-head structure with the DLG4 gene on Chromosome 17, and that the transcribed regions of these genes overlap. It has been shown that treatment with DEHP results in upregulation by the minimal promoter. While DLG4 and VLCAD share common regulatory elements, they each have separate and distinct tissue-specific elements that confer their function. In mice, these two genes are in a head-to-head orientation, but they do not overlap.
Function
The VLCAD enzyme catalyzes most of fatty acid beta-oxidation by forming a C2-C3 trans-double bond in the fatty acid. VLCAD is specific to very long-chain fatty acids, typically C16-acyl-CoA and longer. In mice that have VLCAD deficiency, there is little to no protein hyperacetylation in the liver; this implies that the VLCAD protein is also necessary for protein acetylation in this biological system.
Clinical significance
ACADVL is linked with very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD), which has many symptoms, and typically presents as one of three phenotypes. The first is severe, with an early childhood onset and high mortality rate; the most common symptom is this form is cardiomyopathy. The second is a late onset childhood form, with milder symptoms that present most commonly as hypoketotic hypoglycemia. The final form presents in adulthood, and presents as isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, which is triggered by exercise or fasting. The disease is typically diagnosed by first performing tandem mass spectrometry on a blood sample of the patient during a period of stress, and then performing molecular genetic testing for the presence of the ACADVL gene. The deficiency is treated systematically, but certain conditions such as fasting, myocardial irritation, dehydration, and high fat diets are avoided in an attempt to prevent secondary complications.
Interactions
ACADVL has been shown to have 75 binary protein-protein interactions including 73 co-complex interactions. ACADVL appears to interact with RPSA and GPHN.
Zhang LF, Ding JH, Yang BZ, He GC, Roe C (Dec 2003). "Characterization of the bidirectional promoter region between the human genes encoding VLCAD and PSD-95". Genomics. 82 (6): 660–8. doi:10.1016/s0888-7543(03)00211-8. PMID14611808.
Leslie, N. D.; Valencia, C. A.; Strauss, A. W.; Zhang, K.; Adam, M. P.; Ardinger, H. H.; Pagon, R. A.; Wallace, S. E.; Bean LJH; Stephens, K.; Amemiya, A. (1993). "Very Long-Chain Acyl-Coenzyme a Dehydrogenase Deficiency". PMID20301763. {{cite journal}}: Cite journal requires |journal= (help)
Costa CG, Dorland L, de Almeida IT, Jakobs C, Duran M, Poll-The BT (June 1998). "The effect of fasting, long-chain triglyceride load and carnitine load on plasma long-chain acylcarnitine levels in mitochondrial very long-chain acyl-CoA dehydrogenase deficiency". Journal of Inherited Metabolic Disease. 21 (4): 391–9. doi:10.1023/A:1005354624735. PMID9700596. S2CID2198523.