Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
V-type proton ATPase subunit E 1 is an enzyme that in humans is encoded by the ATP6V1E1gene.
This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A, three B, and two G subunits, as well as a C, D, E, F, and H subunit. The V1 domain contains the ATP catalytic site. This gene encodes alternate transcriptional splice variants, encoding different V1 domain E subunit isoforms. Pseudogenes for this gene have been found in the genome.
"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
Baud V, Mears AJ, Lamour V, Scamps C, Duncan AM, McDermid HE, Lipinski M (Jul 1994). "The E subunit of vacuolar H(+)-ATPase localizes close to the centromere on human chromosome 22". Hum Mol Genet. 3 (2): 335–9. doi:10.1093/hmg/3.2.335. PMID8004105.
van Hille B, Vanek M, Richener H, Green JR, Bilbe G (Jan 1994). "Cloning and tissue distribution of subunits C, D, and E of the human vacuolar H(+)-ATPase". Biochem Biophys Res Commun. 197 (1): 15–21. doi:10.1006/bbrc.1993.2434. PMID8250920.
Stevens TH, Forgac M (1998). "Structure, function and regulation of the vacuolar (H+)-ATPase". Annu. Rev. Cell Dev. Biol. 13 (1): 779–808. doi:10.1146/annurev.cellbio.13.1.779. PMID9442887.