Misplaced Pages

Actomyosin ring

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Cellular formation during cytokinesis
Fig.1. Cell cycle showing the formation of the actomyosin ring during telophase or early cytokinesis stage.

In molecular biology, an actomyosin ring or contractile ring, is a prominent structure during cytokinesis. It forms perpendicular to the axis of the spindle apparatus towards the end of telophase, in which sister chromatids are identically separated at the opposite sides of the spindle forming nuclei (Figure 1). The actomyosin ring follows an orderly sequence of events: identification of the active division site, formation of the ring, constriction of the ring, and disassembly of the ring. It is composed of actin and myosin II bundles, thus the term actomyosin. The actomyosin ring operates in contractile motion, although the mechanism on how or what triggers the constriction is still an evolving topic. Other cytoskeletal proteins are also involved in maintaining the stability of the ring and driving its constriction. Apart from cytokinesis, in which the ring constricts as the cells divide (Figure 2), actomyosin ring constriction has also been found to activate during wound closure. During this process, actin filaments are degraded, preserving the thickness of the ring. After cytokinesis is complete, one of the two daughter cells inherits a remnant known as the midbody ring.

Activation of the cell-cycle kinase (e.g. Rho-kinases) during telophase initiates constriction of the actomyosin ring by creating a groove that migrates in an inward motion. Rho-kinases such as ROCK1 has been found to regulate actomyosin contraction through phosphorylation of the myosin light chain (MLC). This mechanism promotes cell-cell contacts and integrity leading to adhesion formation.

Variation between kingdoms

Fig. 2. The actomyosin ring induces formation of the cleavage furrow (4th from top) to assist cell cleavage.

In animals, the ring forms along the cleavage furrow on the inside of the plasma membrane then splits by abscission. In fungi, it forms at the mother-bud neck before mitosis. Septin is heavily involved in the formation of the fungal AMR. In most bacteria and many archaea a homologous structure called the Z-ring forms out of FtsZ, a homolog of tubulin. Chloroplasts form an analogous structure out of FtsZ. These structures are not made out of actomyosin, but serve a similar role in constricting and permitting cytokinesis. In plant cells, there is no actomyosin ring. Instead, a cell plate grows centrifugally outwards from the center of the plane of division until it fuses with the existing cell wall.

See also

References

  1. ^ Cheffings, T. H.; Burroughs, N. J.; Balasubramanian, M. K. (2016). "Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis". Current Biology. 26 (15): R719–R737. doi:10.1016/j.cub.2016.06.071. PMID 27505246. S2CID 3908927.
  2. Mana-Capelli, Sebastian; McCollum, Dannel (2013). "Actomyosin Ring". Encyclopedia of Systems Biology. p. 8. doi:10.1007/978-1-4419-9863-7_779. ISBN 978-1-4419-9862-0.
  3. Munjal, A.; Lecuit, T. (2014). "Actomyosin networks and tissue morphogenesis". Development. 141 (9): 1789–1793. doi:10.1242/dev.091645. PMID 24757001. S2CID 5257808.
  4. Mendes Pinto, I.; Rubinstein, B.; Li, R. (2013). "Force to divide: Structural and mechanical requirements for actomyosin ring contraction". Biophysical Journal. 105 (3): 547–554. doi:10.1016/j.bpj.2013.06.033. PMC 3736747. PMID 23931302.
  5. Martin, A. C. (2016). "Embryonic ring closure: Actomyosin rings do the two-step". The Journal of Cell Biology. 215 (3): 301–303. doi:10.1083/jcb.201610061. PMC 5100299. PMID 27799371.
  6. Kucera, Ondrej; Siahaan, Valerie; Janda, Daniel; Dijkstra, Sietske H; Pilatova, Eliska; Zatecka, Eva; Diez, Stefan; Braun, Marcus; Lansky, Zdenek (2021). "Anillin propels myosin-independent constriction of actin rings". Nature Communications. 12 (1): 4595. doi:10.1038/s41467-021-24474-1. PMC 8319318. PMID 34321459.
  7. Schwayer, C.; Sikora, M.; Slováková, J.; Kardos, R.; Heisenberg, C. P. (2016). "Actin Rings of Power". Developmental Cell. 37 (6): 493–506. doi:10.1016/j.devcel.2016.05.024. PMID 27326928.
  8. Pelletier, L.; Yamashita, Y. M. (2012). "Centrosome asymmetry and inheritance during animal development". Current Opinion in Cell Biology. 24 (4): 541–546. doi:10.1016/j.ceb.2012.05.005. PMC 3425708. PMID 22683192.
  9. Shi, J.; Surma, M.; Zhang, L.; Wei, L. (2013). "Dissecting the roles of ROCK isoforms in stress-induced cell detachment". Cell Cycle. 12 (10): 1492–1900. doi:10.4161/cc.24699. PMC 3680529. PMID 23598717.
  10. Chen, C. T.; Hehnly, H.; Doxsey, S. J. (2012). "Orchestrating vesicle transport, ESCRTs and kinase surveillance during abscission". Nature Reviews. Molecular Cell Biology. 13 (8): 483–488. doi:10.1038/nrm3395. PMC 4215936. PMID 22781903.
  11. Fededa, J. P.; Gerlich, D. W. (2012). "Molecular control of animal cell cytokinesis". Nature Cell Biology. 14 (5): 440–447. doi:10.1038/ncb2482. hdl:11336/20338. PMID 22552143. S2CID 3355851.
  12. Meitinger, F.; Palani, S. (2016). "Actomyosin ring driven cytokinesis in budding yeast". Seminars in Cell & Developmental Biology. 53: 19–27. doi:10.1016/j.semcdb.2016.01.043. PMC 4884668. PMID 26845196.
  13. Alberts, B., A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter, editors. (2015). Molecular Biology of the Cell, 6th edition. Garland Science: New York. 1464 pp.
  14. Bi, E.; Maddox, P.; Lew, D. J.; Salmon, E. D.; McMillan, J. N.; Yeh, E.; Pringle, J. R. (1998). "Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis". The Journal of Cell Biology. 142 (5): 1301–1312. doi:10.1083/jcb.142.5.1301. PMC 2149343. PMID 9732290.
Categories: