Misplaced Pages

Extreme weather

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Adverse weather) Unusual, severe or unseasonal weather
A tornado is an example of an extreme weather event. This tornado struck Anadarko, Oklahoma during a tornado outbreak in 1999.

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. They are defined as lying in the most unusual ten percent (10th or 90th percentile of a probability density function). The main types of extreme weather include heat waves, cold waves and heavy precipitation or storm events, such as tropical cyclones. The effects of extreme weather events are economic costs, loss of human lives, droughts, floods, landslides. Severe weather is a particular type of extreme weather which poses risks to life and property.

Weather patterns can experience some variation, and so extreme weather can be attributed, at least in part, to the natural climate variability that exists on Earth. For example, the El Niño-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) are climate phenomena that impact weather patterns worldwide. Generally speaking, one event in extreme weather cannot be attributed to any one single cause. However, certain system wide changes to global weather systems can lead to increased frequency or intensity of extreme weather events.

Climate change is making some extreme weather events more frequent and more intense. This applies in particular to heat waves and cold waves. The science of extreme event attribution looks at the reasons behind extreme events. Scientists are fairly sure that climate change makes heavy rainfall events as well as drought periods more severe. Climate models indicate that rising temperatures will make extreme weather events worse worldwide.

Extreme weather has serious impacts on human society and on ecosystems. There is loss of human lives, damage to infrastructure and ecosystem destruction. For example, a global insurer Munich Re estimates that natural disasters cause more than 90 billion dollars in global direct losses in 2015. Some human activities can exacerbate the effects, for example poor urban planning, wetland destruction, and building homes along floodplains.

Definition

Part of a series on
Weather
Temperate and polar seasons
Tropical seasons
Storms
Precipitation
Topics
Glossaries
icon Weather portal

Extreme weather describes unusual weather events that are at the extremes of the historical distribution for a given area. The IPCC Sixth Assessment Report defines an extreme weather event as follows: "An event that is rare at a particular place and time of year. Definitions of 'rare' vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile of a probability density function estimated from observations."

In comparison, the term severe weather is any aspect of the weather that poses risks to life, property or requires the intervention of authorities. Severe weather is thus a particular type of extreme weather.

Types

Definitions of extreme weather vary in different parts of the community, changing the outcomes of research from those fields.

Heat waves

2003 European heat wave
Main article: Heat wave Further information: Effects of climate change § Heat waves and temperature extremes Further information: List of heat waves

Heat waves are periods of abnormally high temperatures and heat index. Definitions of a heatwave vary because of the variation of temperatures in different geographic locations. Excessive heat is often accompanied by high levels of humidity, but can also be catastrophically dry.

Because heat waves are not visible as other forms of severe weather, like hurricanes, tornadoes, and thunderstorms, they are one of the less known forms of extreme weather. Severely hot weather can damage populations and crops due to potential dehydration or hyperthermia, heat cramps, heat expansion, and heat stroke. Dried soils are more susceptible to erosion, decreasing lands available for agriculture. Outbreaks of wildfires can increase in frequency as dry vegetation has an increased likelihood of igniting. The evaporation of bodies of water can be devastating to marine populations, decreasing the size of the habitats available as well as the amount of nutrition present within the waters. Livestock and other animal populations may decline as well.

During excessive heat, plants shut their leaf pores (stomata), a protective mechanism to conserve water but also curtails plants' absorption capabilities. This leaves more pollution and ozone in the air, which leads to higher mortality in the population. It has been estimated that extra pollution during the hot summer of 2006 in the UK, cost 460 lives. The European heat waves from summer 2003 are estimated to have caused 30,000 excess deaths, due to heat stress and air pollution. Over 200 U.S cities have registered new record high temperatures. The worst heat wave in the US occurred in 1936 and killed more than 5000 people directly. The worst heat wave in Australia occurred in 1938–39 and killed 438. The second worst was in 1896.

Power outages can also occur within areas experiencing heat waves due to the increased demand for electricity (i.e. air conditioning use). The urban heat island effect can increase temperatures, particularly overnight.

Cold waves

Cold wave in continental North America from Dec. 3–10, 2013. Red color means above mean temperature; blue represents below normal temperature.
Main article: Cold wave

A cold wave is a weather phenomenon that is distinguished by a cooling of the air. Specifically, as used by the U.S. National Weather Service, a cold wave is a rapid fall in temperature within a 24-hour period requiring substantially increased protection for agriculture, industry, commerce, and social activities. The precise criterion for a cold wave is determined by the rate at which the temperature falls, and the minimum to which it falls. This minimum temperature is dependent on the geographical region and time of year. Cold waves generally are capable of occurring at any geological location and are formed by large cool air masses that accumulate over certain regions, caused by movements of air streams.

A cold wave can cause death and injury to livestock and wildlife. Exposure to cold mandates greater caloric intake for all animals, including humans, and if a cold wave is accompanied by heavy and persistent snow, grazing animals may be unable to reach necessary food and water, and die of hypothermia or starvation. Cold waves often necessitate the purchase of fodder for livestock at a considerable cost to farmers. Human populations can be inflicted with frostbite when exposed for extended periods of time to cold and may result in the loss of limbs or damage to internal organs.

Extreme winter cold often causes poorly insulated water pipes to freeze. Even some poorly protected indoor plumbing may rupture as frozen water expands within them, causing property damage. Fires, paradoxically, become more hazardous during extreme cold. Water mains may break and water supplies may become unreliable, making firefighting more difficult.

Cold waves that bring unexpected freezes and frosts during the growing season in mid-latitude zones can kill plants during the early and most vulnerable stages of growth. This results in crop failure as plants are killed before they can be harvested economically. Such cold waves have caused famines. Cold waves can also cause soil particles to harden and freeze, making it harder for plants and vegetation to grow within these areas. One extreme was the so-called Year Without a Summer of 1816, one of several years during the 1810s in which numerous crops failed during freakish summer cold snaps after volcanic eruptions reduced incoming sunlight.

In some cases more frequent extremely cold winter weather – i.e. across parts of Asia and North America including the February 2021 North American cold wavecan be a result of climate change such as due to changes in the Arctic. However, conclusions that link climate change to cold waves are considered to still be controversial. The JRC PESETA IV project concluded in 2020 that overall climate change will result in a decline in the intensity and frequency of extreme cold spells, with milder winters reducing fatalities from extreme cold, even if individual cold extreme weather may sometimes be caused by changes due to climate change and possibly even become more frequent in some regions. According to a 2023 study, "weak extreme cold events (ECEs) significantly decrease in frequency, projection area and total area over the north hemisphere with global warming. However, the frequency, projection area and total area of strong ECEs show no significant trend, whereas they are increasing in Siberia and Canada."

Heavy rain and storms

See also: Effects of climate change on the water cycle

Tropical cyclones

Main article: Tropical cyclones This section is an excerpt from Tropical cyclone.
Part of a series on
Tropical cyclones
Structure
Effects
Climatology and tracking
Tropical cyclone naming
Outline
Media coverage
Tropical cyclones portal

A tropical cyclone is a rapidly rotating storm system with a low-pressure area, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is called a hurricane (/ˈhʌrɪkən, -keɪn/), typhoon (/taɪˈfuːn/), tropical storm, cyclonic storm, tropical depression, or simply cyclone. A hurricane is a strong tropical cyclone that occurs in the Atlantic Ocean or northeastern Pacific Ocean. A typhoon occurs in the northwestern Pacific Ocean. In the Indian Ocean and South Pacific, comparable storms are referred to as "tropical cyclones". In modern times, on average around 80 to 90 named tropical cyclones form each year around the world, over half of which develop hurricane-force winds of 65 kn (120 km/h; 75 mph) or more.

Tropical cyclones typically form over large bodies of relatively warm water. They derive their energy through the evaporation of water from the ocean surface, which ultimately condenses into clouds and rain when moist air rises and cools to saturation. This energy source differs from that of mid-latitude cyclonic storms, such as nor'easters and European windstorms, which are powered primarily by horizontal temperature contrasts. Tropical cyclones are typically between 100 and 2,000 km (62 and 1,243 mi) in diameter. The strong rotating winds of a tropical cyclone are a result of the conservation of angular momentum imparted by the Earth's rotation as air flows inwards toward the axis of rotation. As a result, cyclones rarely form within 5° of the equator. Tropical cyclones are very rare in the South Atlantic (although occasional examples do occur) due to consistently strong wind shear and a weak Intertropical Convergence Zone. In contrast, the African easterly jet and areas of atmospheric instability give rise to cyclones in the Atlantic Ocean and Caribbean Sea.

Causes and attribution

Attribution research

Further information: Extreme event attribution

Generally speaking, one event in extreme weather cannot be attributed to any one cause. However, certain system wide changes to global weather systems can lead to increased frequency or intensity of extreme weather events.

Early research in extreme weather focused on statements about predicting certain events. Contemporary research focuses more on the attribution of causes to trends in events. In particular the field is focusing on climate change alongside other causal factors for these events.

A 2016 report from the National Academies of Sciences, Engineering, and Medicine, recommended investing in improved shared practices across the field working on attribution research, improving the connection between research outcomes and weather forecasting.

As more research is done in this area, scientists have begun to investigate the connection between climate change and extreme weather events and what future impacts may arise. Much of this work is done through climate modeling. Climate models provide important predictions about the future characteristics of the atmosphere, oceans, and Earth using data collected in the modern day. However, while climate models are vital for studying more complex processes such as climate change or ocean acidification, they are still only approximations. Moreover, weather events are complex and cannot be tied to a singular cause—there are often many atmospheric variables such as temperature, pressure, or moisture to note on top of any influences from climate change or natural variability.

Natural variability

Further information: Climate variability and change

Aspects of our climate system have a certain level of natural variability, and extreme weather events can occur for several reasons beyond human impact, including changes in pressure or the movement of air. Areas along the coast or located in tropical regions are more likely to experience storms with heavy precipitation than temperate regions, although such events can occur.

The atmosphere is a complex and dynamic system, influenced by several factors such as the natural tilt and orbit of the Earth, the absorption or reflection of solar radiation, the movement of air masses, and the water cycle. Due to this, weather patterns can experience some variation, and so extreme weather can be attributed, at least in part, to the natural climate variability that exists on Earth.

Climatic phenomena such as the El Niño-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) impact weather patterns in specific regions of the world, influencing temperature and precipitation. The record-breaking extreme weather events that have been catalogued throughout the past two hundred years most likely arise when climate patterns like ENSO or NAO work "in the same direction as human‐induced warming."

Climate change

Further information: Effects of climate change § Weather, and Effects of climate change on the water cycle
The IPCC Sixth Assessment Report (2021) projects progressively large increases in both the frequency (horizontal bars) and intensity (vertical bars) of extreme weather events, for increasing degrees of global warming—including more than a 5 °C increase in extreme heat events for a 4 °C global average temperature increase.

Some studies assert a connection between rapidly warming arctic temperatures and thus a vanishing cryosphere to extreme weather in mid-latitudes. In a study published in Nature in 2019, scientists used several simulations to determine that the melting of ice sheets in Greenland and Antarctica could affect overall sea level and sea temperature. Other models have shown that modern temperature rise and the subsequent addition of meltwater to the ocean could lead to a disruption of the thermohaline circulation, which is responsible for the movement of seawater and distribution of heat around the globe. A collapse of this circulation in the northern hemisphere could lead to an increase in extreme temperatures in Europe, as well as more frequent storms by throwing off natural climate variability and conditions. Thus, as increasing temperatures cause glaciers to melt, mid-latitudes could experience shifts in weather patterns or temperatures.

There were around 6,681 climate-related events reported during 2000-2019, compared to 3,656 climate-related events reported during 1980–1999. In this report, a 'climate-related event' refers to floods, storms, droughts, landslides, extreme temperatures (like heat waves or freezes), and wildfires; it excludes geophysical events such as volcanic eruptions, earthquakes, or mass movements. While there is evidence that a changing global climate, such as an increase in temperature, has impacted the frequency of extreme weather events, the most significant effects are likely to arise in the future. This is where climate models are useful, for they can provide simulations of how the atmosphere may behave over time and what steps need to be taken in the present day to mitigate any negative changes.

The increasing probability of record week-long heat extremes occurrence depends on warming rate, rather than global warming level.

Some researchers attribute increases in extreme weather occurrences to more reliable reporting systems. A difference in what qualifies as 'extreme weather' in varying climate systems could also be argued. Over or under reporting of casualties or losses can lead to inaccuracy in the impact of extreme weather. However, the UN reports show that, although some countries have experienced greater effects, there have been increases in extreme weather events on all continents. Current evidence and climate models show that an increasing global temperature will intensify extreme weather events around the globe, thereby amplifying human loss, damages and economic costs, and ecosystem destruction.

Tropical cyclones and climate change

The 20-year average of the number of annual Category 4 and 5 hurricanes in the Atlantic region has approximately doubled since the year 2000.The number of $1 billion Atlantic hurricanes almost doubled from the 1980s to the 2010s, and inflation-adjusted costs have increased more than elevenfold. The increases have been attributed to climate change and to greater numbers of people moving to coastal areas.

In 2020, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. government predicted that, over the 21st Century, the frequency of tropical storms and Atlantic hurricanes would decline by 25 percent while their maximum intensity would rise by 5 percent.

This section is an excerpt from Tropical cyclones and climate change.
North Atlantic tropical cyclone activity according to the Power Dissipation Index, 1949–2015. Sea surface temperature has been plotted alongside the PDI to show how they compare. The lines have been smoothed using a five-year weighted average, plotted at the middle year.

Climate change affects tropical cyclones in a variety of ways: an intensification of rainfall and wind speed, an increase in the frequency of very intense storms and a poleward extension of where the cyclones reach maximum intensity are among the consequences of human-induced climate change. Tropical cyclones use warm, moist air as their source of energy or fuel. As climate change is warming ocean temperatures, there is potentially more of this fuel available.

Between 1979 and 2017, there was a global increase in the proportion of tropical cyclones of Category 3 and higher on the Saffir–Simpson scale. The trend was most clear in the north Indian Ocean, North Atlantic and in the Southern Indian Ocean. In the north Indian Ocean, particularly the Arabian Sea, the frequency, duration, and intensity of cyclones have increased significantly. There has been a 52% increase in the number of cyclones in the Arabian Sea, while the number of very severe cyclones have increased by 150%, during 1982–2019. Meanwhile, the total duration of cyclones in the Arabian Sea has increased by 80% while that of very severe cyclones has increased by 260%. In the North Pacific, tropical cyclones have been moving poleward into colder waters and there was no increase in intensity over this period. With 2 °C (3.6 °F) warming, a greater percentage (+13%) of tropical cyclones are expected to reach Category 4 and 5 strength. A 2019 study indicates that climate change has been driving the observed trend of rapid intensification of tropical cyclones in the Atlantic basin. Rapidly intensifying cyclones are hard to forecast and therefore pose additional risk to coastal communities.

Human activities that exacerbate the effects

There are plenty of anthropogenic activities that can exacerbate the effects of extreme weather events. Urban planning often amplifies urban flooding impacts, especially in areas that are at increased risk of storms due to their location and climate variability. First, increasing the amount of impervious surfaces, such as sidewalks, roads, and roofs, means that less of the water from incoming storms is absorbed by the land. The destruction of wetlands, which act as a natural reservoir by absorbing water, can intensify the impact of floods and extreme precipitation. This can happen both inland and at the coast. However, wetland destruction along the coast can mean decreasing an area's natural 'cushion,' thus allowing storm surges and flood waters to reach farther inland during hurricanes or cyclones. Building homes below sea level or along a floodplain puts residents at increased risk of destruction or injury in an extreme precipitation event.

More urban areas can also contribute to the rise of extreme or unusual weather events. Tall structures can alter the way that wind moves throughout an urban area, pushing warmer air upwards and inducing convection, creating thunderstorms. With these thunderstorms comes increased precipitation, which, because of the large amounts of impervious surfaces in cities, can have devastating impacts. Impervious surfaces also absorb energy from the sun and warm the atmosphere, causing drastic increases in temperatures in urban areas. This, along with pollution and heat released from cars and other anthropogenic sources, contributes to urban heat islands.

Effects

In recent decades, new high temperature records have substantially outpaced new low temperature records on a growing portion of Earth's surface.The IPCC Sixth Assessment Report (2021) projects progressively large increases in both the frequency and intensity of extreme weather events, for increasing degrees of global warming.

The effects of extreme weather includes, but are not limited to:

  • Too much rain (heavy downpours), causing floods and landslides
  • Too much heat and no rain (heatwave) causing droughts and wildfires
  • Strong winds, such as hurricanes and tornadoes, causing damage to man made structures and animal habitats
  • Large snowfalls, causing avalanches and blizzards

Economic cost

In the face of record breaking extreme weather events, climate change adaptation efforts fall short while economists are confronted with inflation, the cost-of-living crisis, and economic uncertainty. In 2011 the IPCC estimated, that annual losses have ranged since 1980 from a few billion to above US$200 billion, with the highest economic losses occurring in 2005, the year of Hurricane Katrina. The global weather-related disaster losses, such as loss of human lives, cultural heritage, and ecosystem services, are difficult to value and monetize, and thus they are poorly reflected in estimates of losses.

The World Economic Forum Global Risks Perception Survey 2023-2024 (GRPS) found that 66 percent of respondents selected extreme weather as top risk. The survey was conducted after the 2023 heat waves. According to the GRPS results, the perception of necessary short and long-term risk management varies. Younger respondents prioritize environmental risks, including extreme weather, in the short-term. Respondents working in the private sector prioritize environmental risks as long-term.

Loss of human lives

The death toll from natural disasters has declined over 90 percent since the 1920s, according to the International Disaster Database, even as the total human population on Earth quadrupled, and temperatures rose 1.3 °C. In the 1920s, 5.4 million people died from natural disasters while in the 2010s, just 400,000 did.

The most dramatic and rapid declines in deaths from extreme weather events have taken place in south Asia. Where a tropical cyclone in 1991 in Bangladesh killed 135,000 people, and a 1970 cyclone killed 300,000, the similarly-sized Cyclone Ampham, which struck India and Bangladesh in 2020, killed just 120 people in total.

On July 23, 2020, Munich Re announced that the 2,900 total global deaths from natural disasters for the first half of 2020 were a record-low, and "much lower than the average figures for both the last 30 years and the last 10 years."

A 2021 study found that 9.4% of global deaths between 2000 and 2019 – ~5 million annually – can be attributed to extreme temperature with cold-related ones making up the larger share and decreasing and heat-related ones making up ~0.91 % and increasing.

Droughts and floods

See also: Effects of climate change § Effects on weather, and Effects of climate change on the water cycle
A dry lakebed in California, which is in 2022 experiencing its most serious drought in 1,200 years, worsened by climate change.

Climate change has led to an increase in the frequency and/or intensity of certain types of extreme weather. Storms such as hurricanes or tropical cyclones may experience greater rainfall, causing major flooding events or landslides by saturating soil. This is because warmer air is able to 'hold' more moisture due to the water molecules having increased kinetic energy, and precipitation occurs at a greater rate because more molecules have the critical speed needed to fall as rain drops. A shift in rainfall patterns can lead to greater amounts of precipitation in one area while another experiences much hotter, drier conditions, which can lead to drought. This is because an increase in temperatures also lead to an increase in evaporation at the surface of the earth, so more precipitation does not necessarily mean universally wetter conditions or a worldwide increase in drinking water.

See also

References

  1. "Has Climate Variability, or have Climate Extremes, Changed?". Intergovernmental Panel on Climate Change. Archived from the original on 2005-11-01. Retrieved 13 April 2007.
  2. ^ IPCC, 2022: Annex II: Glossary . In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, UK and New York, NY, US, pp. 2897–2930, doi:10.1017/9781009325844.029.
  3. "Chapter 1 - Overview of extreme weather events, impacts and forecasting techniques". Extreme Weather Forecasting: 1–86. 2023. doi:10.1016/B978-0-12-820124-4.00009-8.
  4. ^ Trenberth, Kevin E. (November 2011). "Attribution of climate variations and trends to human influences and natural variability: Attribution of the human influence". Wiley Interdisciplinary Reviews: Climate Change. 2 (6): 925–930. doi:10.1002/wcc.142. S2CID 140147654.
  5. ^ Attribution of Extreme Weather Events in the Context of Climate Change (Report). Washington, DC: The National Academies Press. 2016. pp. 21–24. doi:10.17226/21852. ISBN 978-0-309-38094-2.
  6. Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, F.  Otto, I.  Pinto, M. Satoh, S.M. Vicente-Serrano, M. Wehner, and B. Zhou, 2021: Chapter 11: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I  to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1513–1766, doi:10.1017/9781009157896.013.
  7. ^ Attribution of Extreme Weather Events in the Context of Climate Change (Report). Washington, DC: The National Academies Press. 2016. pp. 127–136. doi:10.17226/21852. ISBN 978-0-309-38094-2. Archived from the original on 2022-02-15. Retrieved 2020-02-22.
  8. ^ Mogil, H Michael (2007). Extreme Weather. New York: Black Dog & Leventhal Publishers. pp. 210–211. ISBN 978-1-57912-743-5.
  9. NOAA NWS. "Heat: A Major Killer". Archived from the original on 2014-07-05. Retrieved 2014-06-16.
  10. Casey Thornbrugh; Asher Ghertner; Shannon McNeeley; Olga Wilhelmi; Robert Harriss (2007). "Heat Wave Awareness Project". National Center for Atmospheric Research. Archived from the original on 2018-08-01. Retrieved 2009-08-18.
  11. "It's not just the heat – it's the ozone: Study highlights hidden dangers". University of York. 2013. Archived from the original on 2018-07-29. Retrieved 2014-06-16.
  12. Brücker, G. (2005). "Vulnerable populations: Lessons learnt from the summer 2003 heatwaves in europe". Eurosurveillance. 10 (7): 1–2. doi:10.2807/esm.10.07.00551-en.
  13. Epstein, Paul R (2005). "Climate Change and Human Health". The New England Journal of Medicine. 353 (14): 1433–1436. doi:10.1056/nejmp058079. PMC 2636266. PMID 16207843.
  14. Doan, Lynn; Covarrubias, Amanda (2006-07-27). "Heat Eases, but Thousands of Southern Californians Still Lack Power". Los Angeles Times. Archived from the original on 2023-04-16. Retrieved June 16, 2014.
  15. T. R. Oke (1982). "The energetic basis of the urban heat island". Quarterly Journal of the Royal Meteorological Society. 108 (455): 1–24. Bibcode:1982QJRMS.108....1O. doi:10.1002/qj.49710845502. S2CID 120122894.
  16. Glossary of Meteorology (2009). "Cold Wave". American Meteorological Society. Archived from the original on 2011-05-14. Retrieved 2009-08-18.
  17. "Climate change: Arctic warming linked to colder winters". BBC News. 2 September 2021. Archived from the original on 20 October 2021. Retrieved 20 October 2021.
  18. Cohen, Judah; Agel, Laurie; Barlow, Mathew; Garfinkel, Chaim I.; White, Ian (3 September 2021). "Linking Arctic variability and change with extreme winter weather in the United States". Science. 373 (6559): 1116–1121. Bibcode:2021Sci...373.1116C. doi:10.1126/science.abi9167. PMID 34516838. S2CID 237402139.
  19. Irfan, Umair (18 February 2021). "Scientists are divided over whether climate change is fueling extreme cold events". Vox. Archived from the original on 23 October 2021. Retrieved 24 October 2021.
  20. "Climate change impacts of heat and cold extremes on humans" (PDF). Archived (PDF) from the original on 21 August 2021. Retrieved 25 October 2021.
  21. He, Yongli; Wang, Xiaoxia; Zhang, Boyuan; Wang, Zhanbo; Wang, Shanshan (2023-05-13). "Contrast responses of strong and weak winter extreme cold events in the Northern Hemisphere to global warming". Climate Dynamics. 61 (9–10): 4533–4550. Bibcode:2023ClDy...61.4533H. doi:10.1007/s00382-023-06822-7. ISSN 1432-0894. S2CID 258681375.
  22. Global Guide to Tropical Cyclone Forecasting: 2017 (PDF) (Report). World Meteorological Organization. April 17, 2018. Archived (PDF) from the original on July 14, 2019. Retrieved September 6, 2020.
  23. ^ Oreskes, Naomi (2018-02-19), "Why Believe a Computer? Models, Measures, and Meaning in the Natural World", The Earth Around Us, Routledge, pp. 70–82, doi:10.4324/9780429496653-8, ISBN 978-0-429-49665-3
  24. "Climate Change 2021 / The Physical Science Basis / Working Group I contribution to the WGI Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Summary for Policymakers" (PDF). Intergovernmental Panel on Climate Change. 9 August 2021. Fig. SPM.6 (p. 18), 23. Archived (PDF) from the original on 4 November 2021.
  25. Francis, Jennifer A.; Vavrus, Stephen J. (2012). "Evidence linking Arctic amplification to extreme weather in mid-latitudes". Geophysical Research Letters. 39 (6): L06801. Bibcode:2012GeoRL..39.6801F. doi:10.1029/2012GL051000.
  26. Vladimir Petoukhov; Vladimir A. Semenov (November 2010). "A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents" (PDF). Journal of Geophysical Research: Atmospheres. 115 (21): D21111. Bibcode:2010JGRD..11521111P. doi:10.1029/2009JD013568. Archived (PDF) from the original on 2017-08-09. Retrieved 2019-09-24.
  27. J A Screen (November 2013). "Influence of Arctic sea ice on European summer precipitation". Environmental Research Letters. 8 (4): 044015. Bibcode:2013ERL.....8d4015S. doi:10.1088/1748-9326/8/4/044015. hdl:10871/14835.
  28. Qiuhong Tang; Xuejun Zhang; Jennifer A. Francis (December 2013). "Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere". Nature Climate Change. 4 (1): 45–50. Bibcode:2014NatCC...4...45T. doi:10.1038/nclimate2065.
  29. Golledge, Nicholas R.; Keller, Elizabeth D.; Gomez, Natalya; Naughten, Kaitlin A.; Bernales, Jorge; Trusel, Luke D.; Edwards, Tamsin L. (February 2019). "Global environmental consequences of twenty-first-century ice-sheet melt". Nature. 566 (7742): 65–72. Bibcode:2019Natur.566...65G. doi:10.1038/s41586-019-0889-9. ISSN 0028-0836. PMID 30728520. S2CID 59606358. Archived from the original on 2021-06-19. Retrieved 2021-05-05.
  30. ^ Caesar, L.; McCarthy, G. D.; Thornalley, D. J. R.; Cahill, N.; Rahmstorf, S. (March 2021). "Current Atlantic Meridional Overturning Circulation weakest in last millennium". Nature Geoscience. 14 (3): 118–120. Bibcode:2021NatGe..14..118C. doi:10.1038/s41561-021-00699-z. ISSN 1752-0894. S2CID 232052381. Archived from the original on 2021-06-17. Retrieved 2021-05-05.
  31. ^ Human Cost of Disasters. United Nations. 2020. doi:10.18356/79b92774-en. ISBN 978-92-1-005447-8. S2CID 243258946.
  32. "Extreme heat waves in a warming world don't just break records – they shatter them". PBS NewsHour. 28 July 2021. Archived from the original on 12 August 2021. Retrieved 13 August 2021.
  33. Fischer, E. M.; Sippel, S.; Knutti, R. (August 2021). "Increasing probability of record-shattering climate extremes". Nature Climate Change. 11 (8): 689–695. Bibcode:2021NatCC..11..689F. doi:10.1038/s41558-021-01092-9. ISSN 1758-6798. PMC 7617090. S2CID 236438374.
  34. Leonhardt, David; Moses, Claire; Philbrick, Ian Prasad (29 September 2022). "Ian Moves North / Category 4 and 5 Atlantic hurricanes since 1980". The New York Times. Archived from the original on 30 September 2022. Source: NOAA - Graphic by Ashley Wu, The New York Times (cites for 2022— data)
  35. ^ Philbrick, Ian Pasad; Wu, Ashley (2 December 2022). "Population Growth Is Making Hurricanes More Expensive". The New York Times. Archived from the original on 6 December 2022. Newspaper states data source: NOAA.
  36. Knutson, Tom. "Global Warming and Hurricanes". www.gfdl.noaa.gov. Archived from the original on 2020-04-16. Retrieved 2020-08-29.
  37. ^ Knutson, Thomas; Camargo, Suzana J.; Chan, Johnny C. L.; Emanuel, Kerry; Ho, Chang-Hoi; Kossin, James; Mohapatra, Mrutyunjay; Satoh, Masaki; Sugi, Masato; Walsh, Kevin; Wu, Liguang (August 6, 2019). "Tropical Cyclones and Climate Change Assessment: Part II. Projected Response to Anthropogenic Warming". Bulletin of the American Meteorological Society. 101 (3): BAMS–D–18–0194.1. Bibcode:2020BAMS..101E.303K. doi:10.1175/BAMS-D-18-0194.1. hdl:1721.1/124705.
  38. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, United Kingdom and New York City, US, pp. 8–9; 15–16, doi:10.1017/9781009157896.001.
  39. "Major tropical cyclones have become '15% more likely' over past 40 years". Carbon Brief. May 18, 2020. Archived from the original on August 8, 2020. Retrieved August 31, 2020.
  40. ^ Deshpande, Medha; Singh, Vineet Kumar; Ganadhi, Mano Kranthi; Roxy, M. K.; Emmanuel, R.; Kumar, Umesh (2021-12-01). "Changing status of tropical cyclones over the north Indian Ocean". Climate Dynamics. 57 (11): 3545–3567. Bibcode:2021ClDy...57.3545D. doi:10.1007/s00382-021-05880-z. ISSN 1432-0894.
  41. Singh, Vineet Kumar; Roxy, M.K. (March 2022). "A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean". Earth-Science Reviews. 226: 103967. arXiv:2012.04384. Bibcode:2022ESRv..22603967S. doi:10.1016/j.earscirev.2022.103967.
  42. Kossin, James P.; Knapp, Kenneth R.; Olander, Timothy L.; Velden, Christopher S. (May 18, 2020). "Global increase in major tropical cyclone exceedance probability over the past four decades". Proceedings of the National Academy of Sciences. 117 (22): 11975–11980. Bibcode:2020PNAS..11711975K. doi:10.1073/pnas.1920849117. PMC 7275711. PMID 32424081.
  43. Collins, M.; Sutherland, M.; Bouwer, L.; Cheong, S.-M.; et al. (2019). "Chapter 6: Extremes, Abrupt Changes and Managing Risks" (PDF). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. p. 602. Archived (PDF) from the original on December 20, 2019. Retrieved October 6, 2020.
  44. ^ Douglas, Ian; Goode, David; Houck, Michael C.; Maddox, David, eds. (2010). The Routledge Handbook of Urban Ecology. doi:10.4324/9780203839263. hdl:11603/25230. ISBN 978-1-136-88341-5.
  45. Rome, Adam (2001). The Bulldozer in the Countryside. Cambridge University Press. doi:10.1017/cbo9780511816703. ISBN 978-0-521-80490-5.
  46. "Louisiana Resiliency Assistance Program". Louisiana Resiliency Assistance Program. Archived from the original on 2021-05-07. Retrieved 2021-05-05.
  47. Kleerekoper, Laura; van Esch, Marjolein; Salcedo, Tadeo Baldiri (July 2012). "How to make a city climate-proof, addressing the urban heat island effect". Resources, Conservation and Recycling. 64: 30–38. Bibcode:2012RCR....64...30K. doi:10.1016/j.resconrec.2011.06.004. Archived from the original on 2022-01-20. Retrieved 2021-05-05.
  48. "Mean Monthly Temperature Records Across the Globe / Timeseries of Global Land and Ocean Areas at Record Levels for July from 1951-2023". NCEI.NOAA.gov. National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA). August 2023. Archived from the original on 14 August 2023. (change "202307" in URL to see years other than 2023, and months other than 07=July)
  49. "Climate Change 2021: The Physical Science Basis: Summary for Policymakers" (PDF). Intergovernmental Panel on Climate Change. 9 August 2021. p. SPM-23. Archived (PDF) from the original on 4 November 2021.
  50. "Fun Facts for Kids on Animals, Earth, History and more!". DK Find Out!. Archived from the original on 2021-07-22. Retrieved 2020-05-26.
  51. "Extreme Weather and Climate Change". Center for Climate and Energy Solutions. 2019-08-14. Archived from the original on 2021-06-16. Retrieved 2020-05-26.
  52. "The Global Risks Report 2024 19th edition" (PDF). World Economic Forum. January 2024. p. 4. ISBN 9782940631643.
  53. "Billion-Dollar Weather and Climate Disasters: Summary Stats". National Centers for Environmental Information (NCEI). Archived from the original on 2018-07-13. Retrieved 2015-03-23.
  54. Smith A.B.; R. Katz (2013). "U.S. Billion-dollar Weather and Climate Disasters: Data sources, Trends, Accuracy, and Biases" (PDF). Natural Hazards. 67 (2): 387–410. Bibcode:2013NatHa..67..387S. doi:10.1007/s11069-013-0566-5. S2CID 30742858. Archived from the original (PDF) on 2016-03-04. Retrieved 2015-03-23.
  55. "IPCC – Intergovernmental Panel on Climate Change" (PDF). Archived from the original on November 24, 2011.
  56. "The Global Risks Report 2024 19th edition" (PDF). World Economic Forum. January 2024. pp. 13 & 38. ISBN 9782940631643.
  57. "The international disasters database". EM-DAT. Archived from the original on 2021-06-18. Retrieved 2020-08-29.
  58. "The Deadliest Tropical Cyclone on Record Killed 300,000 People". The Weather Channel. Archived from the original on 2021-06-24. Retrieved 2020-08-29.
  59. "Amphan's Toll: More Than 100 Killed, billions in Damage, Hundreds of Thousands Homeless". www.wunderground.com. Archived from the original on 2020-10-14. Retrieved 2020-08-29.
  60. "Very high losses from thunderstorms – The natural disaster figures for the first half of 2020". www.munichre.com. Archived from the original on 2021-06-24. Retrieved 2020-08-29.
  61. "Extreme temperatures kill 5 million people a year with heat-related deaths rising, study finds". The Guardian. 7 July 2021. Archived from the original on 14 August 2021. Retrieved 14 August 2021.
  62. Zhao, Qi; et al. (1 July 2021). "Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study". The Lancet Planetary Health. 5 (7): e415 – e425. doi:10.1016/S2542-5196(21)00081-4. hdl:2158/1285803. ISSN 2542-5196. PMID 34245712. S2CID 235791583.
  63. Irina Ivanova (June 2, 2022). "California is rationing water amid its worst drought in 1,200 years". CBS News. Archived from the original on January 13, 2023. Retrieved June 2, 2022.
  64. Seneviratne, Sonia I.; Zhang, Xuebin; Adnan, M.; Badi, W.; et al. (2021). "Chapter 11: Weather and climate extreme events in a changing climate" (PDF). IPCC AR6 WG1 2021. p. 1517. Archived (PDF) from the original on 2022-05-29. Retrieved 2022-05-13. in IPCC (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al. (eds.). Climate Change 2021: The Physical Science Basis (PDF). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press). Archived (PDF) from the original on 2021-08-13. Retrieved 2022-05-13.
  65. ^ US EPA, OAR (2016-06-27). "Climate Change Indicators: U.S. and Global Precipitation". US EPA. Archived from the original on 2021-06-16. Retrieved 2021-05-05.
  66. US EPA, OAR (2016-06-27). "Climate Change Indicators: Drought". US EPA. Archived from the original on 2021-06-16. Retrieved 2021-05-05.

External links

Categories: