Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
The asymptotic behavior of is found by determining the value of for which and plugging that value into the equation:
(see Θ). Intuitively, represents a small perturbation in the index of . By noting that and that the absolute value of is always between 0 and 1, can be used to ignore the floor function in the index. Similarly, one can also ignore the ceiling function. For example, and will, as per the Akra–Bazzi theorem, have the same asymptotic behavior.
Example
Suppose is defined as 1 for integers and for integers . In applying the Akra–Bazzi method, the first step is to find the value of for which . In this example, . Then, using the formula, the asymptotic behavior can be determined as follows:
Significance
The Akra–Bazzi method is more useful than most other techniques for determining asymptotic behavior because it covers such a wide variety of cases. Its primary application is the approximation of the running time of many divide-and-conquer algorithms. For example, in the merge sort, the number of comparisons required in the worst case, which is roughly proportional to its runtime, is given recursively as and
for integers , and can thus be computed using the Akra–Bazzi method to be .