Misplaced Pages

Aluthge transform

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics and more precisely in functional analysis, the Aluthge transformation is an operation defined on the set of bounded operators of a Hilbert space. It was introduced by Ariyadasa Aluthge to study p-hyponormal linear operators.

Definition

Let H {\displaystyle H} be a Hilbert space and let B ( H ) {\displaystyle B(H)} be the algebra of linear operators from H {\displaystyle H} to H {\displaystyle H} . By the polar decomposition theorem, there exists a unique partial isometry U {\displaystyle U} such that T = U | T | {\displaystyle T=U|T|} and ker ( U ) ker ( T ) {\displaystyle \ker(U)\supset \ker(T)} , where | T | {\displaystyle |T|} is the square root of the operator T T {\displaystyle T^{*}T} . If T B ( H ) {\displaystyle T\in B(H)} and T = U | T | {\displaystyle T=U|T|} is its polar decomposition, the Aluthge transform of T {\displaystyle T} is the operator Δ ( T ) {\displaystyle \Delta (T)} defined as:

Δ ( T ) = | T | 1 2 U | T | 1 2 . {\displaystyle \Delta (T)=|T|^{\frac {1}{2}}U|T|^{\frac {1}{2}}.}

More generally, for any real number λ [ 0 , 1 ] {\displaystyle \lambda \in } , the λ {\displaystyle \lambda } -Aluthge transformation is defined as

Δ λ ( T ) := | T | λ U | T | 1 λ B ( H ) . {\displaystyle \Delta _{\lambda }(T):=|T|^{\lambda }U|T|^{1-\lambda }\in B(H).}

Example

For vectors x , y H {\displaystyle x,y\in H} , let x y {\displaystyle x\otimes y} denote the operator defined as

z H x y ( z ) = z , y x . {\displaystyle \forall z\in H\quad x\otimes y(z)=\langle z,y\rangle x.}

An elementary calculation shows that if y 0 {\displaystyle y\neq 0} , then Δ λ ( x y ) = Δ ( x y ) = x , y y 2 y y . {\displaystyle \Delta _{\lambda }(x\otimes y)=\Delta (x\otimes y)={\frac {\langle x,y\rangle }{\lVert y\rVert ^{2}}}y\otimes y.}

Notes

  1. Aluthge, Ariyadasa (1990). "On p-hyponormal operators for 0 < p < 1". Integral Equations Operator Theory. 13 (3): 307–315. doi:10.1007/bf01199886.
  2. Chabbabi, Fadil; Mbekhta, Mostafa (June 2017). "Jordan product maps commuting with the λ-Aluthge transform". Journal of Mathematical Analysis and Applications. 450 (1): 293–313. doi:10.1016/j.jmaa.2017.01.036.

References

External links

Categories: