In mathematics, specifically in functional analysis, a Banach algebra, A, is amenable if all bounded derivations from A into dual Banach A-bimodules are inner (that is of the form for some in the dual module).
An equivalent characterization is that A is amenable if and only if it has a virtual diagonal.
Examples
- If A is a group algebra for some locally compact group G then A is amenable if and only if G is amenable.
- If A is a C*-algebra then A is amenable if and only if it is nuclear.
- If A is a uniform algebra on a compact Hausdorff space then A is amenable if and only if it is trivial (i.e. the algebra C(X) of all continuous complex functions on X).
- If A is amenable and there is a continuous algebra homomorphism from A to another Banach algebra, then the closure of is amenable.
References
- F.F. Bonsall, J. Duncan, "Complete normed algebras", Springer-Verlag (1973).
- H.G. Dales, "Banach algebras and automatic continuity", Oxford University Press (2001).
- B.E. Johnson, "Cohomology in Banach algebras", Memoirs of the AMS 127 (1972).
- J.-P. Pier, "Amenable Banach algebras", Longman Scientific and Technical (1988).
- Volker Runde, "Amenable Banach Algebras. A Panorama", Springer Verlag (2020).
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||
Spectral theory and -algebras | |
---|---|
Basic concepts | |
Main results | |
Special Elements/Operators | |
Spectrum | |
Decomposition | |
Spectral Theorem | |
Special algebras | |
Finite-Dimensional | |
Generalizations | |
Miscellaneous | |
Examples | |
Applications |
|
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |