In the mathematical field of category theory, an amnestic functor F : A → B is a functor for which an A-isomorphism ƒ is an identity whenever Fƒ is an identity.
An example of a functor which is not amnestic is the forgetful functor Metc→Top from the category of metric spaces with continuous functions for morphisms to the category of topological spaces. If and are equivalent metrics on a space then is an isomorphism that covers the identity, but is not an identity morphism (its domain and codomain are not equal).
References
- "Abstract and Concrete Categories. The Joy of Cats". Jiri Adámek, Horst Herrlich, George E. Strecker.
Category theory | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||
This category theory-related article is a stub. You can help Misplaced Pages by expanding it. |