Misplaced Pages

Arcsine distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Arcsine transformation) Type of probability distribution
Arcsine
Probability density functionProbability density function for the arcsine distribution
Cumulative distribution functionCumulative distribution function for the arcsine distribution
Parameters none
Support x ( 0 , 1 ) {\displaystyle x\in (0,1)}
PDF f ( x ) = 1 π x ( 1 x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}}
CDF F ( x ) = 2 π arcsin ( x ) {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)}
Mean 1 2 {\displaystyle {\frac {1}{2}}}
Median 1 2 {\displaystyle {\frac {1}{2}}}
Mode x { 0 , 1 } {\displaystyle x\in \{0,1\}}
Variance 1 8 {\displaystyle {\tfrac {1}{8}}}
Skewness 0 {\displaystyle 0}
Excess kurtosis 3 2 {\displaystyle -{\tfrac {3}{2}}}
Entropy ln π 4 {\displaystyle \ln {\tfrac {\pi }{4}}}
MGF 1 + k = 1 ( r = 0 k 1 2 r + 1 2 r + 2 ) t k k ! {\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {2r+1}{2r+2}}\right){\frac {t^{k}}{k!}}}
CF e i t 2 J 0 ( t 2 ) {\displaystyle e^{i{\frac {t}{2}}}J_{0}({\frac {t}{2}})}

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:

F ( x ) = 2 π arcsin ( x ) = arcsin ( 2 x 1 ) π + 1 2 {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)={\frac {\arcsin(2x-1)}{\pi }}+{\frac {1}{2}}}

for 0 ≤ x ≤ 1, and whose probability density function is

f ( x ) = 1 π x ( 1 x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}}

on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if X {\displaystyle X} is an arcsine-distributed random variable, then X B e t a ( 1 2 , 1 2 ) {\displaystyle X\sim {\rm {Beta}}{\bigl (}{\tfrac {1}{2}},{\tfrac {1}{2}}{\bigr )}} . By extension, the arcsine distribution is a special case of the Pearson type I distribution.

The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial. The arcsine probability density is a distribution that appears in several random-walk fundamental theorems. In a fair coin toss random walk, the probability for the time of the last visit to the origin is distributed as an (U-shaped) arcsine distribution. In a two-player fair-coin-toss game, a player is said to be in the lead if the random walk (that started at the origin) is above the origin. The most probable number of times that a given player will be in the lead, in a game of length 2N, is not N. On the contrary, N is the least likely number of times that the player will be in the lead. The most likely number of times in the lead is 0 or 2N (following the arcsine distribution).

Generalization

Arcsine – bounded support
Parameters < a < b < {\displaystyle -\infty <a<b<\infty \,}
Support x ( a , b ) {\displaystyle x\in (a,b)}
PDF f ( x ) = 1 π ( x a ) ( b x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}}
CDF F ( x ) = 2 π arcsin ( x a b a ) {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)}
Mean a + b 2 {\displaystyle {\frac {a+b}{2}}}
Median a + b 2 {\displaystyle {\frac {a+b}{2}}}
Mode x a , b {\displaystyle x\in {a,b}}
Variance 1 8 ( b a ) 2 {\displaystyle {\tfrac {1}{8}}(b-a)^{2}}
Skewness 0 {\displaystyle 0}
Excess kurtosis 3 2 {\displaystyle -{\tfrac {3}{2}}}
CF e i t b + a 2 J 0 ( b a 2 t ) {\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)}

Arbitrary bounded support

The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation

F ( x ) = 2 π arcsin ( x a b a ) {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)}

for a ≤ x ≤ b, and whose probability density function is

f ( x ) = 1 π ( x a ) ( b x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}}

on (ab).

Shape factor

The generalized standard arcsine distribution on (0,1) with probability density function

f ( x ; α ) = sin π α π x α ( 1 x ) α 1 {\displaystyle f(x;\alpha )={\frac {\sin \pi \alpha }{\pi }}x^{-\alpha }(1-x)^{\alpha -1}}

is also a special case of the beta distribution with parameters B e t a ( 1 α , α ) {\displaystyle {\rm {Beta}}(1-\alpha ,\alpha )} .

Note that when α = 1 2 {\displaystyle \alpha ={\tfrac {1}{2}}} the general arcsine distribution reduces to the standard distribution listed above.

Properties

  • Arcsine distribution is closed under translation and scaling by a positive factor
    • If X A r c s i n e ( a , b )   then  k X + c A r c s i n e ( a k + c , b k + c ) {\displaystyle X\sim {\rm {Arcsine}}(a,b)\ {\text{then }}kX+c\sim {\rm {Arcsine}}(ak+c,bk+c)}
  • The square of an arcsine distribution over (-1, 1) has arcsine distribution over (0, 1)
    • If X A r c s i n e ( 1 , 1 )   then  X 2 A r c s i n e ( 0 , 1 ) {\displaystyle X\sim {\rm {Arcsine}}(-1,1)\ {\text{then }}X^{2}\sim {\rm {Arcsine}}(0,1)}
  • The coordinates of points uniformly selected on a circle of radius r {\displaystyle r} centered at the origin (0, 0), have an A r c s i n e ( r , r ) {\displaystyle {\rm {Arcsine}}(-r,r)} distribution
    • For example, if we select a point uniformly on the circumference, U U n i f o r m ( 0 , 2 π r ) {\displaystyle U\sim {\rm {Uniform}}(0,2\pi r)} , we have that the point's x coordinate distribution is r cos ( U ) A r c s i n e ( r , r ) {\displaystyle r\cdot \cos(U)\sim {\rm {Arcsine}}(-r,r)} , and its y coordinate distribution is r sin ( U ) A r c s i n e ( r , r ) {\textstyle r\cdot \sin(U)\sim {\rm {Arcsine}}(-r,r)}

Characteristic function

The characteristic function of the generalized arcsine distribution is a zero order Bessel function of the first kind, multiplied by a complex exponential, given by e i t b + a 2 J 0 ( b a 2 t ) {\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)} . For the special case of b = a {\displaystyle b=-a} , the characteristic function takes the form of J 0 ( b t ) {\displaystyle J_{0}(bt)} .

Related distributions

  • If U and V are i.i.d uniform (−π,π) random variables, then sin ( U ) {\displaystyle \sin(U)} , sin ( 2 U ) {\displaystyle \sin(2U)} , cos ( 2 U ) {\displaystyle -\cos(2U)} , sin ( U + V ) {\displaystyle \sin(U+V)} and sin ( U V ) {\displaystyle \sin(U-V)} all have an A r c s i n e ( 1 , 1 ) {\displaystyle {\rm {Arcsine}}(-1,1)} distribution.
  • If X {\displaystyle X} is the generalized arcsine distribution with shape parameter α {\displaystyle \alpha } supported on the finite interval then X a b a B e t a ( 1 α , α )   {\displaystyle {\frac {X-a}{b-a}}\sim {\rm {Beta}}(1-\alpha ,\alpha )\ }
  • If X ~ Cauchy(0, 1) then 1 1 + X 2 {\displaystyle {\tfrac {1}{1+X^{2}}}} has a standard arcsine distribution

References

  1. Overturf, Drew; et al. (2017). Investigation of beamforming patterns from volumetrically distributed phased arrays. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822. doi:10.1109/MILCOM.2017.8170756. ISBN 978-1-5386-0595-0.
  2. Buchanan, K.; et al. (2020). "Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions". IEEE Transactions on Antennas and Propagation. 68 (7): 5353–5364. doi:10.1109/TAP.2020.2978887.
  3. Feller, William (1971). An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley. ISBN 978-0471257097.
  4. Feller, William (1968). An Introduction to Probability Theory and Its Applications. Vol. 1 (3rd ed.). ISBN 978-0471257080.

Further reading

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: