Names | |
---|---|
IUPAC name Arsanide | |
Other names
| |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
Gmelin Reference | 217243 |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | AsH2 |
Molar mass | 76.938 g·mol |
Related compounds | |
Related compounds |
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references |
An arsinide, arsanide, dihydridoarsenate(1−) or arsanyl compound is a chemical derivative of arsine, where one hydrogen atom is replaced with a metal or cation. The arsinide ion has formula AsH−2. It can be considered as a ligand with name arsenido or arsanido. Few chemists study arsanyl compounds, as they are both toxic and unstable. The IUPAC names are arsanide and dihydridoarsenate(1−). For the ligand the name is arsanido. The neutral −AsH2 group is termed arsanyl.
Formation
Alkali metal arsinides can form by bubbling arsine through a liquid ammonia solution of alkali metal such as sodium, potassium or alkaline earth metal such as calcium.
Arsinides are also formed when arsine reacts with thin layers of alkali metals.
The arsine may reduce some compounds to metals, so for example an attempt to make an indium arsinide results in metallic indium.
Reactions
When heated, metal hydrogen arsinide and metal dihydrogen arsinide compounds lose hydrogen to become a metal arsenide:
- NaAsH2 → NaAs + H2
With lithium dihydrogen arsinide LiAsH2, it can also lose arsine AsH3 to become dilithium hydrogen arsinide Li2AsH:
- 2 LiAsH2 → Li2AsH + AsH3
These reactions take place even at room temperature, and result in a discolouration of the original chemical.
Sodium dihydrogen arsinide NaAsH2 reacts with alkyl halides RX (where X = F, Cl, Br, I, and R is alkyl) to make dialkylarsine AsHR2. Potassium dihydrogen arsinide KAsH2 reacts with alkyl halides to make trialkylarsine AsR3.
Sodium dihydrogen arsinide NaAsH2 reacts with diethyl carbonate (CH3CH2O)2CO to yield the 2-arsaethynolate [OCAs] ion, (analogous with cyanate [OCN] ion) which can be crystallised with the sodium ion Na and 18-crown-6.
Arsinides react with water to yield arsine AsH3:
- KAsH2 + H2O → KOH + AsH3
Potassium dihydrogen arsinide KAsH2 reacts with halobenzenes C6H5X, where X = Cl, Br, I (chlorobenzene C6H5Cl, bromobenzene C6H5Br, iodobenzene C6H5I) to produce benzene C6H6, tetraphenyldiarsine (C6H5)2As−As(C6H5)2 and triphenylarsine As(C6H5)3.
Potassium dihydrogen arsinide KAsH2 reacts with a silyl halide, e.g. chlorosilane SiH3Cl, producing trisilylarsine.
Potassium dihydrogen arsinide KAsH2 reacts with H2As−BH2·N(CH3)3 and a crown ether resulting in [K(C12H24O6)][H2As−BH2−AsH2].
List
Formula | Name | Crystal system | Space group | Unit cell (Å) | Volume | Density | Comment | ref |
---|---|---|---|---|---|---|---|---|
LiAsH2 | Lithium arsanide | |||||||
Li2AsH | Dilithium arsanide | decomposition at 0°C | ||||||
LiAsH2·2NH3 | ||||||||
LiAsH2·4NH3 | ||||||||
NaAsH2 | Sodium arsanide | white; decomposition at room temperature | ||||||
Na2AsH | Disodium arsanide | |||||||
NaAsH2·2NH3 | ||||||||
NaAsH2·4NH3 | ||||||||
Li[Al(AsH2)4] | Lithium tetraarsanidoaluminate | |||||||
(Dipp2Nacnac)Al(AsH2)2 Dipp2Nacnac=HC2 | ||||||||
IDipp⋅AlH2AsH2 IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) | monoclinic | I2/a | colourless | |||||
IDipp⋅AlH(AsH2)2 | monoclinic | I2/a | a 18.3591 b 9.0485 c 34.4864 β 91.580° | |||||
KAsH2 | Potassium arsanide | stable to 80°C; decomposition at 90°C | ||||||
Ca(AsH2)2 | Calcium arsanide | |||||||
(Dipp2Nacnac)Ga(AsH2)2 | ||||||||
IDipp⋅GaH2AsH2 | monoclinic | I2/a | colourless | |||||
IDipp⋅GaH(AsH2)2 | monoclinic | I2/a | a 18.465 b 9.1493 c 34.661 β 91.509° | |||||
Th(Tren)AsH2 | Th-As 3.065 Å | |||||||
U(Tren)AsH2 | U-As 3.004 Å |
Related
The hydrogen atoms in the arsinide anion may be substituted by organic or other groups which can then also produce ions, for example by methyl −CH3, like in potassium methyl arsinide (KCH3AsH), or by trimethylsilyl −Si(CH3)3. The doubly bonded ligand =AsH (or AsH) is called arsinidene.
References
- ^ Li, Bin; Bauer, Susanne; Seidl, Michael; Timoshkin, Alexey Y.; Scheer, Manfred (2019-10-28). "Monomeric β-Diketiminato Group 13 Metal Dipnictogenide Complexes with Two Terminal EH 2 Groups (E=P, As)". Chemistry – A European Journal. 25 (60): 13714–13718. doi:10.1002/chem.201903887. ISSN 0947-6539. PMC 6899646. PMID 31456252.
- ^ Yambushev, Farid Dgamaletdinovich (2019). "Methods for the synthesis of arsines and arsine dihalides". Revista de la Universidad del Zulia (27). ISSN 0041-8811.
- ^ Jolly, William L. (March 1959). "The Alkali Metal Salts of Arsine and their Ammoniates. The Reaction of Arsine with Alkali Metals and Alkali Metal Amides". Journal of the American Chemical Society. 81 (5): 1029–1033. Bibcode:1959JAChS..81.1029J. doi:10.1021/ja01514a005.
- Brandsma, L.; Björlo, O.; Van Der Kerk-Van Hoof, A. C.H.T.M. (January 2000). "Fission of As-As Bonds in Elemental Arsenic by Alkali Metals in Liquid Ammonia. Preparation of Dialkyl and Trialkyl Arsines". Phosphorus, Sulfur, and Silicon and the Related Elements. 164 (1): 83–86. doi:10.1080/10426500008045235. S2CID 98800171.
- Hinz, Alexander; Goicoechea, Jose M. (18 July 2016). "The 2-Arsaethynolate Anion: Synthesis and Reactivity Towards Heteroallenes". Angewandte Chemie International Edition. 55 (30): 8536–8541. doi:10.1002/anie.201602310. PMC 5074235. PMID 27093942.
- Hummel, S. G.; Zou, Y.; Beyler, C. A.; Grodzinski, P.; Dapkus, P. D.; McManus, J. V.; Zhang, Y.; Skromme, B. J.; Lee, W. I. (23 March 1992). "Characteristics of GaAs, AlGaAs, and InGaAs materials grown by metalorganic chemical vapor deposition using an on-demand hydride gas generator". Applied Physics Letters. 60 (12): 1483–1485. Bibcode:1992ApPhL..60.1483H. doi:10.1063/1.107278.
- Kuo, Harng-Shen; Jolly, William L. (August 1971). "The reaction of potassium dihydrogen arsenide with halobenzenes". Journal of Organometallic Chemistry. 30 (3): 361–364. doi:10.1016/S0022-328X(00)87519-1.
- Jolly, William L.; Norman, Arlan D. (1 August 1967). HYDRIDES OF GROUPS IV AND V.
- Kahoun, Tobias (28 September 2020). Synthesis and Coordination Chemistry of Anionic Pnictogenylborane Derivatives (Thesis).
- ^ Weinhart, Michael A. K.; Seidl, Michael; Timoshkin, Alexey Y.; Scheer, Manfred (2021-02-15). "NHC-stabilized Parent Arsanylalanes and -gallanes". Angewandte Chemie International Edition. 60 (7): 3806–3811. doi:10.1002/anie.202013849. ISSN 1433-7851. PMC 7898810. PMID 33197127.
- ^ Evans, William J.; Hanusa, Timothy P. (2019-01-08). The Heaviest Metals: Science and Technology of the Actinides and Beyond. John Wiley & Sons. p. 114. ISBN 978-1-119-30408-1.
- Watt, George W.; Cappel, Norman O. (March 1938). "Liquid ammonia research in 1937—A review". Journal of Chemical Education. 15 (3): 133. Bibcode:1938JChEd..15..133W. doi:10.1021/ed015p133.