Misplaced Pages

Autotransplantation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Autologous blood transfusion) Surgically moving tissue to a different part of the same body For other uses of "autogenous", see Autogenesis. "autologous" redirects here. Not to be confused with autological. Medical intervention
Autotransplantation
Autotransplantation of wisdom tooth
MeSHD014182
[edit on Wikidata]

Autotransplantation is the transplantation of organs, tissues, or even particular proteins from one part of the body to another in the same person (auto- meaning "self" in Greek).

The autologous tissue (also called autogenous, autogeneic, or autogenic tissue) transplanted by such a procedure is called an autograft or autotransplant.

It is contrasted with allotransplantation (from other individual of the same species), syngeneic transplantation (grafts transplanted between two genetically identical individuals of the same species) and xenotransplantation (from other species).

A common example is the removal of a piece of bone (usually from the hip) and its being ground into a paste for the reconstruction of another portion of bone.

Autotransplantation, although most common with blood, bone, hematopoietic stem cells, or skin, can be used for a wide variety of organs. One of the rare examples is autotransplantation of a kidney from one side of the body to the other. Kidney autotransplantation is used as a treatment for nutcracker syndrome.

Autologous blood donation

See also: Intraoperative blood salvage

In blood banking terminology, autologous blood donation refers to a blood donation marked for use by the donor, typically for a scheduled surgery. (Generally, the notion of "donation" does not refer to giving to oneself, though in this context it has become somewhat acceptably idiomatic.) They are commonly called "autos" by blood bank personnel, and it is one major form of the more general concept of autotransfusion (the other being intraoperative blood salvage).

Some advantages of autologous blood donation are:

  • Blood type will always match, even with a rare blood type or antibody type.
  • If only autologous blood is used during surgery the risk of exposure to infectious disease such as hepatitis or HIV from blood is eliminated.
  • The risk of allergic reactions is reduced.

The disadvantages are:

  • Higher cost due to individualized processing, record-keeping, and management.
  • In most cases, the blood is discarded if it is not used instead of being added to the general supply.
  • Blood donation prior to colorectal cancer surgery seemed causative for a worse overall and colorectal cancer specific survival.

Autologous blood is not routinely tested for infectious diseases markers such as HIV antibodies. In the United States, autologous blood is tested only if it is collected in one place and shipped to another.

There is also a risk that, in an emergency or if more blood is required than has been set aside in advance, the patient could still be exposed to donor blood instead of autologous blood. Autologous donation is also not suitable for patients who are medically unable to or advised not to give blood, such as cardiac patients or small children and infants.

Bone autograft

Illustration depicting bone autograft
See also: Bone grafting § Autologous bone grafting

In orthopaedic medicine, a bone graft can be sourced from a patient's own bone in order to fill space and produce an osteogenic response in a bone defect. However, due to the donor-site morbidity associated with autograft, other methods such as bone allograft and bone morphogenetic proteins and synthetic graft materials are often used as alternatives. Autografts have long been considered the "Gold Standard" in oral surgery and implant dentistry because it offered the best regeneration results. Lately, the introduction of morphogen-enhanced bone graft substitutes have shown similar success rates and quality of regeneration; however, their price is still very high.

Organ autotransplantation

Autotransplantation of selected organs is often preceded by ex vivo (also bench, back-table, or extracorporeal) surgery. For example, ex vivo liver resection and autotransplantation is used in the treatment of selected cases of conventionally unresectable hepatic tumors. It can also be implemented in rare scenarios of a blunt abdominal trauma. Kidney autotransplantation is a method of a nephron-sparing renal tumor excision or complex renal artery aneurysm management. The uses of ex vivo surgery followed by autotransplantation were reported also for heart, lungs and intestines, including multivisceral approaches.

Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, have potential for solving the problem of donor organ shortage. Reprogramming technology would be used to obtain a personalized, patient-specific, cell product without problems related to histocompatibility of the transplanted tissues and organs. However, the ability to generate such tissues and organs will depend on successful strategies to overcome immunogenicity of the manipulated product.

Hematopoietic stem cell autotransplantation

Autologous stem-cell transplantation involves harvesting peripheral blood mononuclear cells (PBMCs) by apheresis collection following mobilization of stem cells from the bone marrow into the peripheral blood. This is typically used for treatment of multiple myeloma or aggressive lymphoma. Stem cells are cryopreserved after collection for infusion after the patient undergoes high-dose chemotherapy. Stem cell rescue permits the use of higher doses of chemotherapy than would be tolerated otherwise.

See also

References

  1. "Definition of auto- in Greek". Dictionary.com. Retrieved 2019-06-25.
  2. Andreasen JO, Paulsen HU, Yu Z, Ahlquist R, Bayer T, Schwartz O (February 1990). "A long-term study of 370 autotransplanted premolars. Part I. Surgical procedures and standardized techniques for monitoring healing". Eur J Orthod. 12 (1): 3–13. doi:10.1093/ejo/12.1.3. PMID 2318261.
  3. Boodman, Sandra D. (October 24, 2020). "Stomach pain was ruining her life. Then a scan provided a life-changing clue". Washington Post.
  4. Harlaar, JJ; Gosselink, MP; Hop, WC; Lange, JF; Busch, OR; Jeekel, H (November 2012). "Blood transfusions and prognosis in colorectal cancer: long-term results of a randomized controlled trial". Annals of Surgery. 256 (5): 681–7. doi:10.1097/SLA.0b013e318271cedf. PMID 23095610. S2CID 35798344.
  5. Regina Hwang; Peter Liou; Tomoaki Kato (November 2018). "Ex vivo liver resection and autotransplantation: An emerging option in selected indications". Journal of Hepatology. 69 (5): 1037–46. doi:10.1016/j.jhep.2018.09.005. PMID 30243765 – via Plum xMetrics.
  6. ^ Ciubotaru, Anatol; Haverich, Axel (2015). "Ex vivo Approach to Treat Failing Organs: Expanding the Limits". European Surgical Research. 54 (1–2): 64–74. doi:10.1159/000367942. ISSN 0014-312X. PMID 25358862.
  7. Zawistowski, Michał; Nowaczyk, Joanna; Jakubczyk, Michał; Domagała, Piotr (October 2020). "Outcomes of ex vivo liver resection and autotransplantation: A systematic review and meta-analysis". Surgery. 168 (4): 631–642. doi:10.1016/j.surg.2020.05.036. ISSN 0039-6060. PMID 32727659.
  8. Boggi, Ugo; Vistoli, Fabio; Del Chiaro, Marco; Signori, Stefano; Sgambelluri, Francesco; Roncella, Manuela; Filipponi, Franco; Mosca, Franco (February 2006). "Extracorporeal Repair and Liver Autotransplantation after Total Avulsion of Hepatic Veins and Retrohepatic Inferior Vena Cava Injury Secondary to Blunt Abdominal Trauma". The Journal of Trauma: Injury, Infection, and Critical Care. 60 (2): 405–6. doi:10.1097/01.ta.0000203562.90036.05. ISSN 0022-5282. PMID 16508504.
  9. Janssen, Martin W. W.; Linxweiler, Johannes; Philipps, Ines; Bütow, Zentia; Siemer, Stefan; Stöckle, Michael; Ohlmann, Carsten-Henning (2018-02-20). "Kidney autotransplantation after nephrectomy and work bench surgery as an ultimate approach to nephron-sparing surgery". World Journal of Surgical Oncology. 16 (1): 35. doi:10.1186/s12957-018-1338-1. ISSN 1477-7819. PMC 5819675. PMID 29463251.
  10. Gallagher, Katherine A.; Phelan, Michael W.; Stern, Tina; Bartlett, Stephen T. (December 2008). "Repair of complex renal artery aneurysms by laparoscopic nephrectomy with ex vivo repair and autotransplantation". Journal of Vascular Surgery. 48 (6): 1408–13. doi:10.1016/j.jvs.2008.07.015. ISSN 0741-5214. PMID 18804939.
  11. Bogomiakova ME, Bogomazova AN, Lagarkova MA (May 2024). "Dysregulation of Immune Tolerance to Autologous iPSCs and Their Differentiated Derivatives". Biochemistry (Mosc). 89 (5): 799–816. doi:10.1134/S0006297924050031. PMID 38880643.
  12. Strüßmann T, Marks R, Wäsch R (May 2024). "Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Is There Still a Role for Autologous Stem Cell Transplantation in the CAR T-Cell Era?". Cancers (Basel). 16 (11): 1987. doi:10.3390/cancers16111987. PMC 11171011. PMID 38893108.
Organ transplantation
Types
Organs and tissues
Medical grafting
Organ donation
Complications
Transplant networks
and government
departments
Advocacy
organizations
Joint societies
Countries
People
Heart
Kidney
Liver
Lung
Pancreas
Penis
Other
Related topics
Blood transfusion and transfusion medicine
Blood products
General concepts
Methods
Tests
Transfusion reactions
and adverse effects
Blood group systems
Categories: