Misplaced Pages

Autoregressive conditional duration

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In financial econometrics, an autoregressive conditional duration (ACD, Engle and Russell (1998)) model considers irregularly spaced and autocorrelated intertrade durations. ACD is analogous to GARCH. In a continuous double auction (a common trading mechanism in many financial markets) waiting times between two consecutive trades vary at random.

Definition

Let   τ t   {\displaystyle ~\tau _{t}~} denote the duration (the waiting time between consecutive trades) and assume that   τ t = θ t z t   {\displaystyle ~\tau _{t}=\theta _{t}z_{t}~} , where z t {\displaystyle z_{t}} are independent and identically distributed random variables, positive and with E ( z t ) = 1 {\displaystyle \operatorname {E} (z_{t})=1} and where the series   θ t   {\displaystyle ~\theta _{t}~} is given by:

θ t = α 0 + α 1 τ t 1 + + α q τ t q + β 1 θ t 1 + + β p θ t p = α 0 + i = 1 q α i τ t i + i = 1 p β i θ t i {\displaystyle \theta _{t}=\alpha _{0}+\alpha _{1}\tau _{t-1}+\cdots +\alpha _{q}\tau _{t-q}+\beta _{1}\theta _{t-1}+\cdots +\beta _{p}\theta _{t-p}=\alpha _{0}+\sum _{i=1}^{q}\alpha _{i}\tau _{t-i}+\sum _{i=1}^{p}\beta _{i}\theta _{t-i}}

and where   α 0 > 0   {\displaystyle ~\alpha _{0}>0~} , α i 0 {\displaystyle \alpha _{i}\geq 0} , β i 0 {\displaystyle \beta _{i}\geq 0} ,   i > 0 {\displaystyle ~i>0} .

References

  • Robert F. Engle and J.R. Russell. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data", Econometrica, 66:1127-1162, 1998.
  • N. Hautsch. "Modelling Irregularly Spaced Financial Data", Springer, 2004.
Categories: