In mathematics, a Barlow surface is one of the complex surfaces discovered by Rebecca Barlow (1984, 1985). They are simply connected surfaces of general type with pg = 0. They are homeomorphic but not diffeomorphic to a projective plane blown up in 8 points. The Hodge diamond for the Barlow surfaces is:
1 | ||||
0 | 0 | |||
0 | 9 | 0 | ||
0 | 0 | |||
1 |
See also
References
- Barlow, Rebecca (1984), "Some new surfaces with ", Duke Mathematical Journal, 51 (4): 889–904, doi:10.1215/S0012-7094-84-05139-1, ISSN 0012-7094, MR 0771386
- Barlow, Rebecca (1985), "A simply connected surface of general type with ", Inventiones Mathematicae, 79 (2): 293–301, doi:10.1007/BF01388974, ISSN 0020-9910, MR 0778128
- Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004), Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, ISBN 978-3-540-00832-3, MR 2030225
- Kotschick, Dieter (1989), "On manifolds homeomorphic to ", Inventiones Mathematicae, 95 (3): 591–600, doi:10.1007/BF01393892, ISSN 0020-9910, MR 0979367
This algebraic geometry–related article is a stub. You can help Misplaced Pages by expanding it. |