Misplaced Pages

Benktander type II distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Benktander Weibull distribution)
Benktander type II distribution
Probability density function
Cumulative distribution function
Parameters a > 0 {\displaystyle a>0} (real)
0 < b 1 {\displaystyle 0<b\leq 1} (real)
Support x 1 {\displaystyle x\geq 1}
PDF e a b ( 1 x b ) x b 2 ( a x b b + 1 ) {\displaystyle e^{{\frac {a}{b}}(1-x^{b})}x^{b-2}\left(ax^{b}-b+1\right)}
CDF 1 x b 1 e a b ( 1 x b ) {\displaystyle 1-x^{b-1}e^{{\frac {a}{b}}(1-x^{b})}}
Mean 1 + 1 a {\displaystyle 1+{\frac {1}{a}}}
Median { log ( 2 ) a + 1 if   b = 1 ( ( 1 b a ) W ( 2 b 1 b a e a 1 b 1 b ) ) 1 b otherwise   {\displaystyle {\begin{cases}{\frac {\log(2)}{a}}+1&{\text{if}}\ b=1\\\left(\left({\frac {1-b}{a}}\right)\mathbf {W} \left({\frac {2^{\frac {b}{1-b}}ae^{\frac {a}{1-b}}}{1-b}}\right)\right)^{\tfrac {1}{b}}&{\text{otherwise}}\ \end{cases}}}
Where W ( x ) {\displaystyle \mathbf {W} (x)} is the Lambert W function
Mode 1 {\displaystyle 1}
Variance b + 2 a e a b E 1 1 b ( a b ) a 2 b {\displaystyle {\frac {-b+2ae^{\frac {a}{b}}\mathbf {E} _{1-{\frac {1}{b}}}\left({\frac {a}{b}}\right)}{a^{2}b}}}
Where E n ( x ) {\displaystyle \mathbf {E} _{n}(x)} is the generalized Exponential integral

The Benktander type II distribution, also called the Benktander distribution of the second kind, is one of two distributions introduced by Gunnar Benktander (1970) to model heavy-tailed losses commonly found in non-life/casualty actuarial science, using various forms of mean excess functions (Benktander & Segerdahl 1960). This distribution is "close" to the Weibull distribution (Kleiber & Kotz 2003).

See also

Notes

  1. ^ From Wolfram Alpha

References

  • Kleiber, Christian; Kotz, Samuel (2003). "7.4 Benktander Distributions". Statistical Size Distributions in Economics and Actuarial Science. Wiley Series and Probability and Statistics. John Wiley & Sons. pp. 247–250. ISBN 9780471457169.
  • Benktander, Gunnar; Segerdahl, Carl-Otto (1960). "On the Analytical Representation of Claim Distributions with Special Reference to Excess of Loss Reinsurance". Proceedings of the XVIth International Congress of Actuaries, Brussels, 1960: 626–646.
  • Benktander, Gunnar (1970). "Schadenverteilungen nach Grösse in der Nicht-Lebensversicherung" [Loss Distributions by Size in Non-life Insurance]. Bulletin of the Swiss Association of Actuaries (in German): 263–283.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: