Misplaced Pages

Benzoyl-CoA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Benzoyl-Coenzyme A
Chemical structure of benzoyl-CoA
Names
Other names benzoyl-S-CoA
S-Benzoate coenzyme A
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C28H40N7O17P3S/c1-28(2,22(38)25(39)31-9-8-18(36)30-10-11-56-27(40)16-6-4-3-5-7-16)13-49-55(46,47)52-54(44,45)48-12-17-21(51-53(41,42)43)20(37)26(50-17)35-15-34-19-23(29)32-14-33-24(19)35/h3-7,14-15,17,20-22,26,37-38H,8-13H2,1-2H3,(H,30,36)(H,31,39)(H,44,45)(H,46,47)(H2,29,32,33)(H2,41,42,43)/t17-,20-,21-,22+,26-/m1/s1Key: VEVJTUNLALKRNO-TYHXJLICSA-N
  • InChI=1/C28H40N7O17P3S/c1-28(2,22(38)25(39)31-9-8-18(36)30-10-11-56-27(40)16-6-4-3-5-7-16)13-49-55(46,47)52-54(44,45)48-12-17-21(51-53(41,42)43)20(37)26(50-17)35-15-34-19-23(29)32-14-33-24(19)35/h3-7,14-15,17,20-22,26,37-38H,8-13H2,1-2H3,(H,30,36)(H,31,39)(H,44,45)(H,46,47)(H2,29,32,33)(H2,41,42,43)/t17-,20-,21-,22+,26-/m1/s1Key: VEVJTUNLALKRNO-TYHXJLICBE
SMILES
  • CC(C)(COP(=O)(O)OP(=O)(O)OC1(((O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)(C(=O)NCCC(=O)NCCSC(=O)C4=CC=CC=C4)O
Properties
Chemical formula C28H36N7O17P3S
Molar mass 867.60 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Benzoyl-CoA is the thioester derived from benzoic acid and coenzyme A. The term benzoyl-CoA also include diverse conjugates of coenzyme A and aromatic carboxylic acids. Benzoate, vanillin, anthranilic acid, 4-ethylphenol, p-cresol, phenol, aniline, terephthalic acid, [3-hydroxybenzoic acid, and phenylalanine are all metabolized to benzoyl-CoA. Additionally, cinnamic acid, p-coumaric acid, ferulic acid, toluene, caffeic acid, benzyl alcohol, and mandelic acid are suspected to be processed similarly.

As substrate for reductases

Benzoyl CoA is processed anaerobically to the cyclohexadiene derivative.

Benzoyl-CoA is a substrate for diverse reductases: 4-hydroxybenzoyl-CoA reductase, benzoyl-CoA reductase, benzoyl-CoA 3-monooxygenase, benzoate-CoA ligase, 2alpha-hydroxytaxane 2-O-benzoyltransferase, anthranilate N-benzoyltransferase, biphenyl synthase, glycine N-benzoyltransferase, ornithine N-benzoyltransferase and phenylglyoxylate dehydrogenase (acylating). Benzoyl-CoA reductase converts benzoyl-CoA to cyclohex-1,5-diene-1-carbonyl-CoA, which is susceptible to hydrolysis, eventually giving acetyl coenzyme A. In this way, many aromatic compounds are biodegraded.

As a benzoyl donor

Benzoyl-CoA is a benzoyl transfer agent for the biosynthesis of hippuric acid. Benzoyl-CoA is a substrate in the formation of xanthonoids in Hypericum androsaemum by benzophenone synthase, condensing a molecule of benzoyl-CoA with three malonyl-CoA, yielding to 2,4,6-trihydroxybenzophenone. This intermediate is subsequently converted by a benzophenone 3′-hydroxylase, a cytochrome P450 monooxygenase, leading to the formation of 2,3′,4,6-tetrahydroxybenzophenone.

Benzoyl-CoA is a substrate of benzoyl-CoA reductase. This enzyme is responsible in part for the reductive dearomatization of aryl compounds mediated by bacteria under anaerobic conditions.

References

  1. ^ Porter, A. W.; Young, L. Y. (2014). "Benzoyl-CoA, a Universal Biomarker for Anaerobic Degradation of Aromatic Compounds". Advances in Applied Microbiology. 88: 167–203. doi:10.1016/B978-0-12-800260-5.00005-X. ISBN 978-0-12-800260-5. PMID 24767428.
  2. Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L. Werner Schmidt and Ludger Beerhues, FEBS Letters, Volume 420, Issues 2-3, 29 December 1997, Pages 143-146, doi:10.1016/S0014-5793(97)01507-X
  3. Matthias Boll , Georg Fuchs , Johann Heider "Anaerobic oxidation of aromatic compounds and hydrocarbons" Current Opinion in Chemical Biology 2002 Volume 6, pp. 604–611. doi:10.1016/S1367-5931(02)00375-7
Category: