Misplaced Pages

Beraha constants

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical constants

The Beraha constants are a series of mathematical constants by which the n th {\displaystyle n{\text{th}}} Beraha constant is given by

B ( n ) = 2 + 2 cos ( 2 π n ) . {\displaystyle B(n)=2+2\cos \left({\frac {2\pi }{n}}\right).}

Notable examples of Beraha constants include B ( 5 ) {\displaystyle B(5)} is φ + 1 {\displaystyle \varphi +1} , where φ {\displaystyle \varphi } is the golden ratio, B ( 7 ) {\displaystyle B(7)} is the silver constant (also known as the silver root), and B ( 10 ) = φ + 2 {\displaystyle B(10)=\varphi +2} .

The following table summarizes the first ten Beraha constants.

n {\displaystyle n} B ( n ) {\displaystyle B(n)} Approximately
1 4
2 0
3 1
4 2
5 1 2 ( 3 + 5 ) {\displaystyle {\frac {1}{2}}(3+{\sqrt {5}})} 2.618
6 3
7 2 + 2 cos ( 2 7 π ) {\displaystyle 2+2\cos({\tfrac {2}{7}}\pi )} 3.247
8 2 + 2 {\displaystyle 2+{\sqrt {2}}} 3.414
9 2 + 2 cos ( 2 9 π ) {\displaystyle 2+2\cos({\tfrac {2}{9}}\pi )} 3.532
10 1 2 ( 5 + 5 ) {\displaystyle {\frac {1}{2}}(5+{\sqrt {5}})} 3.618

See also

Notes

  1. Weisstein, Eric W. "Silver Constant". Wolfram MathWorld. Retrieved November 3, 2018.
  2. Weisstein, Eric W. "Silver Root". Wolfram MathWorld. Retrieved May 5, 2020.

References

  • Weisstein, Eric W. "Beraha Constants". Wolfram MathWorld. Retrieved November 3, 2018.
  • Beraha, S. Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1974.
  • Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 143, 1983.
  • Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, pp. 160–163, 1986.
  • Tutte, W. T. "Chromials." University of Waterloo, 1971.
  • Tutte, W. T. "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
  • Tutte, W. T. "Chromatic Sums for Planar Triangulations I: The Case λ = 1 {\displaystyle \lambda =1} ," Research Report COPR 72–7, University of Waterloo, 1972a.
  • Tutte, W. T. "Chromatic Sums for Planar Triangulations IV: The Case λ = {\displaystyle \lambda =\infty } ." Research Report COPR 72–4, University of Waterloo, 1972b.


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: