Misplaced Pages

Beryllium-10

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Beryllium 10) Isotope of beryllium
Beryllium-10, Be
General
SymbolBe
Namesberyllium-10, 10Be, Be-10
Protons (Z)4
Neutrons (N)6
Nuclide data
Natural abundancetrace
Half-life (t1/2)1.39×10 years
Spin0+
Binding energy64976.3±0.08 keV
Decay modes
Decay modeDecay energy (MeV)
β0.5560
Isotopes of beryllium
Complete table of nuclides

Beryllium-10 (Be) is a radioactive isotope of beryllium. It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen. Beryllium-10 has a half-life of 1.39 × 10 years, and decays by beta decay to stable boron-10 with a maximum energy of 556.2 keV. It decays through the reaction Be→B + e. Light elements in the atmosphere react with high energy galactic cosmic ray particles. The spallation of the reaction products is the source of Be (t, u particles like n or p):

N(t,5u)Be; Example: N(n,p α)Be
O(t,7u)Be
Plot showing variations in solar activity, including variation in Be concentration which varies inversely with solar activity. (Note that the beryllium scale is inverted, so increases on this scale indicate lower beryllium-10 levels).

Because beryllium tends to exist in solutions below about pH 5.5 (and rainwater above many industrialized areas can have a pH less than 5), it will dissolve and be transported to the Earth's surface via rainwater. As the precipitation quickly becomes more alkaline, beryllium drops out of solution. Cosmogenic Be thereby accumulates at the soil surface, where its relatively long half-life (1.387 million years) permits a long residence time before decaying to B.

Be and its daughter product have been used to examine soil erosion, soil formation from regolith, the development of lateritic soils and the age of ice cores. It is also formed in nuclear explosions by a reaction of fast neutrons with C in the carbon dioxide in air, and is one of the historical indicators of past activity at nuclear test sites. Be decay is a significant isotope used as a proxy data measure for cosmogenic nuclides to characterize solar and extra-solar attributes of the past from terrestrial samples.

The rate of production of beryllium-10 depends on the activity of the sun. When solar activity is low (low numbers of sunspots and low solar wind), the barrier against cosmic rays that exists beyond the termination shock is weakened (see Cosmic ray#Cosmic-ray flux). This means more beryllium-10 is produced, and it can be detected millennia later. Beryllium-10 can thus serve as a marker of Miyake events, such as the 774-775 carbon-14 spike. There can be an effect on climate (see Homeric Minimum).

See also


Lighter:
Beryllium-9
Beryllium-10 is an
isotope of beryllium
Heavier:
Beryllium-11
Decay product of:
lithium-11 (β, n)
Decay chain
of beryllium-10
Decays to:
boron-10

References

  1. "Decay Radiation: Be". National Nuclear Data Center. Brookhaven National Laboratory. Retrieved 2013-10-16.
  2. Tilley, D.R.; Kelley, J.H.; Godwin, J.L.; Millener, D.J.; Purcell, J.E.; Sheu, C.G.; Weller, H.R. (2004). "Energy levels of light nuclei". Nuclear Physics A. 745 (3–4): 155–362. doi:10.1016/j.nuclphysa.2004.09.059.
  3. G.A. Kovaltsov; I.G. Usoskin (2010). "A new 3D numerical model of cosmogenic nuclide Be production in the atmosphere". Earth Planet. Sci. Lett. 291 (1–4): 182–199. Bibcode:2010E&PSL.291..182K. doi:10.1016/j.epsl.2010.01.011.
  4. J. Beer; K. McCracken; R. von Steiger (2012). Cosmogenic radionuclides: theory and applications in the terrestrial and space environments. Physics of Earth and Space Environments. Vol. 26. Physics of Earth and Space Environments, Springer, Berlin. doi:10.1007/978-3-642-14651-0. ISBN 978-3-642-14650-3. S2CID 55739885.
  5. S.V. Poluianov; G.A. Kovaltsov; A.L. Mishev; I.G. Usoskin (2016). "Production of cosmogenic isotopes Be, Be, C, Na, and Cl in the atmosphere: Altitudinal profiles of yield functions". J. Geophys. Res. Atmos. 121 (13): 8125–8136. arXiv:1606.05899. Bibcode:2016JGRD..121.8125P. doi:10.1002/2016JD025034. S2CID 119301845.
  6. G. Korschinek; A. Bergmaier; T. Faestermann; U. C. Gerstmann (2010). "A new value for the half-life of Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268 (2): 187–191. Bibcode:2010NIMPB.268..187K. doi:10.1016/j.nimb.2009.09.020.
  7. J. Chmeleff; F. von Blanckenburg; K. Kossert; D. Jakob (2010). "Determination of the Be half-life by multicollector ICP-MS and liquid scintillation counting". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268 (2): 192–199. Bibcode:2010NIMPB.268..192C. doi:10.1016/j.nimb.2009.09.012.
  8. Balco, Greg; Shuster, David L. (2009). "Al-Be–Ne burial dating" (PDF). Earth and Planetary Science Letters. 286 (3–4): 570–575. Bibcode:2009E&PSL.286..570B. doi:10.1016/j.epsl.2009.07.025. Archived from the original (PDF) on 2015-09-23. Retrieved 2012-12-10.
  9. Paleari, Chiara I.; F. Mekhaldi; F. Adolphi; M. Christl; C. Vockenhuber; P. Gautschi; J. Beer; N. Brehm; T. Erhardt; H.-A. Synal; L. Wacker; F. Wilhelms; R. Muscheler (2022). "Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP". Nat. Commun. 13 (214): 214. Bibcode:2022NatCo..13..214P. doi:10.1038/s41467-021-27891-4. PMC 8752676. PMID 35017519.
  10. Philip Ball (Dec 19, 2001). "Flickering sun switched climate". Nature. doi:10.1038/news011220-9.
Categories: