Mathematical potential
In mathematics , the Bessel potential is a potential (named after Friedrich Wilhelm Bessel ) similar to the Riesz potential but with better decay properties at infinity.
If s is a complex number with positive real part then the Bessel potential of order s is the operator
(
I
−
Δ
)
−
s
/
2
{\displaystyle (I-\Delta )^{-s/2}}
where Δ is the Laplace operator and the fractional power is defined using Fourier transforms.
Yukawa potentials are particular cases of Bessel potentials for
s
=
2
{\displaystyle s=2}
in the 3-dimensional space.
Representation in Fourier space
The Bessel potential acts by multiplication on the Fourier transforms : for each
ξ
∈
R
d
{\displaystyle \xi \in \mathbb {R} ^{d}}
F
(
(
I
−
Δ
)
−
s
/
2
u
)
(
ξ
)
=
F
u
(
ξ
)
(
1
+
4
π
2
|
ξ
|
2
)
s
/
2
.
{\displaystyle {\mathcal {F}}((I-\Delta )^{-s/2}u)(\xi )={\frac {{\mathcal {F}}u(\xi )}{(1+4\pi ^{2}\vert \xi \vert ^{2})^{s/2}}}.}
Integral representations
When
s
>
0
{\displaystyle s>0}
, the Bessel potential on
R
d
{\displaystyle \mathbb {R} ^{d}}
can be represented by
(
I
−
Δ
)
−
s
/
2
u
=
G
s
∗
u
,
{\displaystyle (I-\Delta )^{-s/2}u=G_{s}\ast u,}
where the Bessel kernel
G
s
{\displaystyle G_{s}}
is defined for
x
∈
R
d
∖
{
0
}
{\displaystyle x\in \mathbb {R} ^{d}\setminus \{0\}}
by the integral formula
G
s
(
x
)
=
1
(
4
π
)
s
/
2
Γ
(
s
/
2
)
∫
0
∞
e
−
π
|
x
|
2
y
−
y
4
π
y
1
+
d
−
s
2
d
y
.
{\displaystyle G_{s}(x)={\frac {1}{(4\pi )^{s/2}\Gamma (s/2)}}\int _{0}^{\infty }{\frac {e^{-{\frac {\pi \vert x\vert ^{2}}{y}}-{\frac {y}{4\pi }}}}{y^{1+{\frac {d-s}{2}}}}}\,\mathrm {d} y.}
Here
Γ
{\displaystyle \Gamma }
denotes the Gamma function .
The Bessel kernel can also be represented for
x
∈
R
d
∖
{
0
}
{\displaystyle x\in \mathbb {R} ^{d}\setminus \{0\}}
by
G
s
(
x
)
=
e
−
|
x
|
(
2
π
)
d
−
1
2
2
s
2
Γ
(
s
2
)
Γ
(
d
−
s
+
1
2
)
∫
0
∞
e
−
|
x
|
t
(
t
+
t
2
2
)
d
−
s
−
1
2
d
t
.
{\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{(2\pi )^{\frac {d-1}{2}}2^{\frac {s}{2}}\Gamma ({\frac {s}{2}})\Gamma ({\frac {d-s+1}{2}})}}\int _{0}^{\infty }e^{-\vert x\vert t}{\Big (}t+{\frac {t^{2}}{2}}{\Big )}^{\frac {d-s-1}{2}}\,\mathrm {d} t.}
This last expression can be more succinctly written in terms of a modified Bessel function , for which the potential gets its name:
G
s
(
x
)
=
1
2
(
s
−
2
)
/
2
(
2
π
)
d
/
2
Γ
(
s
2
)
K
(
d
−
s
)
/
2
(
|
x
|
)
|
x
|
(
s
−
d
)
/
2
.
{\displaystyle G_{s}(x)={\frac {1}{2^{(s-2)/2}(2\pi )^{d/2}\Gamma ({\frac {s}{2}})}}K_{(d-s)/2}(\vert x\vert )\vert x\vert ^{(s-d)/2}.}
Asymptotics
At the origin, one has as
|
x
|
→
0
{\displaystyle \vert x\vert \to 0}
,
G
s
(
x
)
=
Γ
(
d
−
s
2
)
2
s
π
s
/
2
|
x
|
d
−
s
(
1
+
o
(
1
)
)
if
0
<
s
<
d
,
{\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {d-s}{2}})}{2^{s}\pi ^{s/2}\vert x\vert ^{d-s}}}(1+o(1))\quad {\text{ if }}0<s<d,}
G
d
(
x
)
=
1
2
d
−
1
π
d
/
2
ln
1
|
x
|
(
1
+
o
(
1
)
)
,
{\displaystyle G_{d}(x)={\frac {1}{2^{d-1}\pi ^{d/2}}}\ln {\frac {1}{\vert x\vert }}(1+o(1)),}
G
s
(
x
)
=
Γ
(
s
−
d
2
)
2
s
π
s
/
2
(
1
+
o
(
1
)
)
if
s
>
d
.
{\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {s-d}{2}})}{2^{s}\pi ^{s/2}}}(1+o(1))\quad {\text{ if }}s>d.}
In particular, when
0
<
s
<
d
{\displaystyle 0<s<d}
the Bessel potential behaves asymptotically as the Riesz potential .
At infinity, one has, as
|
x
|
→
∞
{\displaystyle \vert x\vert \to \infty }
,
G
s
(
x
)
=
e
−
|
x
|
2
d
+
s
−
1
2
π
d
−
1
2
Γ
(
s
2
)
|
x
|
d
+
1
−
s
2
(
1
+
o
(
1
)
)
.
{\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{2^{\frac {d+s-1}{2}}\pi ^{\frac {d-1}{2}}\Gamma ({\frac {s}{2}})\vert x\vert ^{\frac {d+1-s}{2}}}}(1+o(1)).}
See also
References
Stein, Elias (1970). Singular integrals and differentiability properties of functions . Princeton University Press. Chapter V eq. (26). ISBN 0-691-08079-8 .
N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I" . Ann. Inst. Fourier . 11 . 385–475, (4,2). doi :10.5802/aif.116 .
N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I" . Ann. Inst. Fourier . 11 . 385–475. doi :10.5802/aif.116 .
N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I" . Ann. Inst. Fourier . 11 . 385–475, (4,3). doi :10.5802/aif.116 .
N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I" . Ann. Inst. Fourier . 11 : 385–475. doi :10.5802/aif.116 .
Duduchava, R. (2001) , "Bessel potential operator" , Encyclopedia of Mathematics , EMS Press
Grafakos, Loukas (2009), Modern Fourier analysis , Graduate Texts in Mathematics , vol. 250 (2nd ed.), Berlin, New York: Springer-Verlag , doi :10.1007/978-0-387-09434-2 , ISBN 978-0-387-09433-5 , MR 2463316 , S2CID 117771953
Hedberg, L.I. (2001) , "Bessel potential space" , Encyclopedia of Mathematics , EMS Press
Solomentsev, E.D. (2001) , "Bessel potential" , Encyclopedia of Mathematics , EMS Press
Stein, Elias (1970), Singular integrals and differentiability properties of functions , Princeton, NJ: Princeton University Press , ISBN 0-691-08079-8
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑