Misplaced Pages

Big q-Jacobi polynomials

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the big q-Jacobi polynomials Pn(x;a,b,c;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme.

Definition

The polynomials are given in terms of basic hypergeometric functions by

P n ( x ; a , b , c ; q ) = 3 ϕ 2 ( q n , a b q n + 1 , x ; a q , c q ; q , q ) {\displaystyle \displaystyle P_{n}(x;a,b,c;q)={}_{3}\phi _{2}(q^{-n},abq^{n+1},x;aq,cq;q,q)}

References

  1. Andrews, George E.; Askey, Richard (1985), "Classical orthogonal polynomials", in Brezinski, C.; Draux, A.; Magnus, Alphonse P.; Maroni, Pascal; Ronveaux, A. (eds.), Polynômes orthogonaux et applications. Proceedings of the Laguerre symposium held at Bar-le-Duc, October 15–18, 1984., Lecture Notes in Math, vol. 1171, Berlin, New York: Springer-Verlag, pp. 36–62, doi:10.1007/BFb0076530, ISBN 978-3-540-16059-5, MR 0838970

Further reading


Stub icon

This polynomial-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: