Misplaced Pages

Binary game

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the binary game is a topological game introduced by Stanisław Ulam in 1935 in an addendum to problem 43 of the Scottish book as a variation of the Banach–Mazur game.

In the binary game, one is given a fixed subset X of the set {0,1} of all sequences of 0s and 1s. The players take it in turn to choose a digit 0 or 1, and the first player wins if the sequence they form lies in the set X. Another way to represent this game is to pick a subset X {\displaystyle X} of the interval [ 0 , 2 ] {\displaystyle } on the real line, then the players alternatively choose binary digits x 0 , x 1 , x 2 , . . . {\displaystyle x_{0},x_{1},x_{2},...} . Player I wins the game if and only if the binary number ( x 0 . x 1 x 2 x 3 . . . ) 2 X {\displaystyle (x_{0}{}.x_{1}{}x_{2}{}x_{3}{}...)_{2}\in {}X} , that is, Σ n = 0 x n 2 n X {\displaystyle \Sigma _{n=0}^{\infty }{\frac {x_{n}}{2^{n}}}\in {}X} . See, page 237.

The binary game is sometimes called Ulam's game, but "Ulam's game" usually refers to the Rényi–Ulam game.

References

  1. Telgársky, Rastislav (Spring 1987). "Topological Games: On the 50th Anniversary of the Banach-Mazur Game". Rocky Mountain Journal of Mathematics. 17 (2): 227–276.
Category: