Misplaced Pages

Burkhardt quartic

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Burkhardt quartic is a quartic threefold in 4-dimensional projective space studied by Burkhardt (1890, 1891, 1892), with the maximum possible number of 45 nodes.

Definition

The equations defining the Burkhardt quartic become simpler if it is embedded in P rather than P. In this case it can be defined by the equations σ1 = σ4 = 0, where σi is the ith elementary symmetric function of the coordinates (x0 : x1 : x2 : x3 : x4 : x5) of P.

Properties

The automorphism group of the Burkhardt quartic is the Burkhardt group U4(2) = PSp4(3), a simple group of order 25920, which is isomorphic to a subgroup of index 2 in the Weyl group of E6.

The Burkhardt quartic is rational and furthermore birationally equivalent to a compactification of the Siegel modular variety A2(3).

References

  1. Hulek, Klaus; Sankaran, G. K. (2002). "The Geometry of Siegel Modular Varieties". Advanced Studies in Pure Mathematics. 35: 89–156.

External links

Category: