Misplaced Pages

Butyraldehyde

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Butanal)
Butyraldehyde
Structural formula of butyraldehyde
Flat structure
Ball-and-stick model
Names
Preferred IUPAC name Butanal
Other names Butyraldehyde
Identifiers
CAS Number
3D model (JSmol)
3DMet
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.225 Edit this at Wikidata
EC Number
  • 204-646-6
KEGG
PubChem CID
RTECS number
  • ES2275000
UNII
UN number 1129
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C4H8O/c1-2-3-4-5/h4H,2-3H2,1H3Key: ZTQSAGDEMFDKMZ-UHFFFAOYSA-N
  • InChI=1/C4H8O/c1-2-3-4-5/h4H,2-3H2,1H3Key: ZTQSAGDEMFDKMZ-UHFFFAOYAZ
SMILES
  • O=CCCC
Properties
Chemical formula C4H8O
Molar mass 72.107 g·mol
Appearance Colorless liquid
Odor Pungent, aldehyde odor
Density 0.8016 g/mL
Melting point −96.86 °C (−142.35 °F; 176.29 K)
Boiling point 74.8 °C (166.6 °F; 347.9 K)
Critical point (T, P) 537 K (264 °C),
4.32 MPa (42.6 atm)
Solubility in water 7.6 g/100 mL (20 °C)
Solubility Miscible with organic solvents
log P 0.88
Magnetic susceptibility (χ) −46.08·10 cm/mol
Refractive index (nD) 1.3766
Viscosity 0.45 cP (20 °C)
Dipole moment 2.72 D
Thermochemistry
Heat capacity (C) 163.7 J·mol·K (liquid)
103.4 J·mol·K (gas)
Std molar
entropy
(S298)
246.6 J·mol·K (liquid)
343.7 J·mol·K (gas)
Std enthalpy of
formation
fH298)
−239.2 kJ·mol (liquid)
−204.8 kJ·mol (gas)
Std enthalpy of
combustion
cH298)
2470.34 kJ·mol
Hazards
GHS labelling:
Pictograms GHS02: Flammable GHS07: Exclamation mark
Signal word Danger
Hazard statements H225, H319
Precautionary statements P210, P280, P302+P352, P304+P340, P305+P351+P338
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 3 0
Flash point −7 °C (19 °F; 266 K)
Autoignition
temperature
230 °C (446 °F; 503 K)
Explosive limits 1.9–12.5%
Lethal dose or concentration (LD, LC):
LD50 (median dose) 2490 mg/kg (rat, oral)
Safety data sheet (SDS) Sigma-Aldrich
Related compounds
Related aldehyde Propionaldehyde
Pentanal
Related compounds Butan-1-ol
Butyric acid, isobutyraldehyde
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Butyraldehyde, also known as butanal, is an organic compound with the formula CH3(CH2)2CHO. This compound is the aldehyde derivative of butane. It is a colorless flammable liquid with an unpleasant smell. It is miscible with most organic solvents.

Production

Butyraldehyde is produced almost exclusively by the hydroformylation of propylene:

CH3CH=CH2 + H2 + CO → CH3CH2CH2CHO

Traditionally, hydroformylation was catalyzed by cobalt carbonyl but rhodium complexes are more common. The dominant technology involves the use of rhodium catalysts derived from the water-soluble ligand tppts. An aqueous solution of the rhodium catalyst converts the propylene to the aldehyde, which forms a lighter (less dense) immiscible phase. About 6 billion kilograms are produced annually in this manner. Butyraldehyde can be produced by the catalytic dehydrogenation of n-butanol. At one time, it was produced industrially by the catalytic hydrogenation of crotonaldehyde, which is derived from acetaldehyde.

Reactions and uses

Butyraldehyde undergoes reactions typical of alkyl aldehydes, and these define many of the uses of this compound. Important reactions include hydrogenation to the alcohol, oxidation to the acid, and base-catalyzed condensation. In the presence of a base, two equivalents of butyraldehyde undergoe aldol condensation to give 2-ethylhexenal. This unsaturated aldehyde is then partially hydrogenated to form 2-ethylhexanal, a precursor to plasticizers such as bis(2-ethylhexyl) phthalate.

Butyraldehyde is a component in the two-step synthesis of trimethylolpropane, which is used for the production of alkyd resins.

A major use of butyraldehyde is in the production of bis(2-ethylhexyl) phthalate, a major plasticizer.

References

  1. Merck Index, 11th Edition, 1591.
  2. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  3. ^ Record of Butyraldehyde in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 13 March 2020.
  4. ^ Raff, Donald K. (2013). "Butanals". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_447.pub2. ISBN 978-3527306732.
  5. Werle, Peter; Morawietz, Marcus; Lundmark, Stefan; Sörensen, Kent; Karvinen, Esko; Lehtonen, Juha (2008). "Alcohols, Polyhydric". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_305.pub2. ISBN 978-3-527-30673-2.

External links

Categories: