5-orthoplex |
Cantellated 5-orthoplex |
Bicantellated 5-cube |
Cantellated 5-cube |
5-cube |
Cantitruncated 5-orthoplex |
Bicantitruncated 5-cube |
Cantitruncated 5-cube |
Orthogonal projections in B5 Coxeter plane |
---|
In five-dimensional geometry, a cantellated 5-orthoplex is a convex uniform 5-polytope, being a cantellation of the regular 5-orthoplex.
There are 6 cantellation for the 5-orthoplex, including truncations. Some of them are more easily constructed from the dual 5-cube.
Cantellated 5-orthoplex
Cantellated 5-orthoplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | rr{3,3,3,4} rr{3,3,3} | |
Coxeter-Dynkin diagrams | ||
4-faces | 82 | 10 40 32 |
Cells | 640 | 80 160 320 80 |
Faces | 1520 | 640 320 480 80 |
Edges | 1200 | 960 240 |
Vertices | 240 | |
Vertex figure | Square pyramidal prism | |
Coxeter group | B5, , order 3840 D5, , order 1920 | |
Properties | convex |
Alternate names
- Cantellated 5-orthoplex
- Bicantellated 5-demicube
- Small rhombated triacontiditeron (Acronym: sart) (Jonathan Bowers)
Coordinates
The vertices of the can be made in 5-space, as permutations and sign combinations of:
- (0,0,1,1,2)
Images
The cantellated 5-orthoplex is constructed by a cantellation operation applied to the 5-orthoplex.
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry |
Cantitruncated 5-orthoplex
Cantitruncated 5-orthoplex | ||
---|---|---|
Type | uniform 5-polytope | |
Schläfli symbol | tr{3,3,3,4} tr{3,3} | |
Coxeter-Dynkin diagrams | ||
4-faces | 82 | 10 40 32 |
Cells | 640 | 80 160 320 80 |
Faces | 1520 | 640 320 480 80 |
Edges | 1440 | 960 240 240 |
Vertices | 480 | |
Vertex figure | Square pyramidal pyramid | |
Coxeter groups | B5, , order 3840 D5, , order 1920 | |
Properties | convex |
Alternate names
- Cantitruncated pentacross
- Cantitruncated triacontiditeron (Acronym: gart) (Jonathan Bowers)
Coordinates
Cartesian coordinates for the vertices of a cantitruncated 5-orthoplex, centered at the origin, are all sign and coordinate permutations of
- (±3,±2,±1,0,0)
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry |
Related polytopes
These polytopes are from a set of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.
Notes
- Klitizing, (x3o3x3o4o - sart)
- Klitizing, (x3x3x3o4o - gart)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "5D uniform polytopes (polytera)". x3o3x3o4o - sart, x3x3x3o4o - gart
External links
- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions, Jonathan Bowers
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |