Misplaced Pages

Cauchy formula for repeated integration

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Method in mathematics
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message)

The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives.

Scalar case

Let f be a continuous function on the real line. Then the nth repeated integral of f with base-point a, f ( n ) ( x ) = a x a σ 1 a σ n 1 f ( σ n ) d σ n d σ 2 d σ 1 , {\displaystyle f^{(-n)}(x)=\int _{a}^{x}\int _{a}^{\sigma _{1}}\cdots \int _{a}^{\sigma _{n-1}}f(\sigma _{n})\,\mathrm {d} \sigma _{n}\cdots \,\mathrm {d} \sigma _{2}\,\mathrm {d} \sigma _{1},} is given by single integration f ( n ) ( x ) = 1 ( n 1 ) ! a x ( x t ) n 1 f ( t ) d t . {\displaystyle f^{(-n)}(x)={\frac {1}{(n-1)!}}\int _{a}^{x}\left(x-t\right)^{n-1}f(t)\,\mathrm {d} t.}

Proof

A proof is given by induction. The base case with n = 1 is trivial, since it is equivalent to f ( 1 ) ( x ) = 1 0 ! a x ( x t ) 0 f ( t ) d t = a x f ( t ) d t . {\displaystyle f^{(-1)}(x)={\frac {1}{0!}}\int _{a}^{x}{(x-t)^{0}}f(t)\,\mathrm {d} t=\int _{a}^{x}f(t)\,\mathrm {d} t.}

Now, suppose this is true for n, and let us prove it for n + 1. Firstly, using the Leibniz integral rule, note that d d x [ 1 n ! a x ( x t ) n f ( t ) d t ] = 1 ( n 1 ) ! a x ( x t ) n 1 f ( t ) d t . {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\left={\frac {1}{(n-1)!}}\int _{a}^{x}(x-t)^{n-1}f(t)\,\mathrm {d} t.} Then, applying the induction hypothesis, f ( n + 1 ) ( x ) = a x a σ 1 a σ n f ( σ n + 1 ) d σ n + 1 d σ 2 d σ 1 = a x [ a σ 1 a σ n f ( σ n + 1 ) d σ n + 1 d σ 2 ] d σ 1 . {\displaystyle {\begin{aligned}f^{-(n+1)}(x)&=\int _{a}^{x}\int _{a}^{\sigma _{1}}\cdots \int _{a}^{\sigma _{n}}f(\sigma _{n+1})\,\mathrm {d} \sigma _{n+1}\cdots \,\mathrm {d} \sigma _{2}\,\mathrm {d} \sigma _{1}\\&=\int _{a}^{x}\left\,\mathrm {d} \sigma _{1}.\end{aligned}}} Note that the term within square bracket has n-times successive integration, and upper limit of outermost integral inside the square bracket is σ 1 {\displaystyle \sigma _{1}} . Thus, comparing with the case for n = n and replacing x , σ 1 , , σ n {\displaystyle x,\sigma _{1},\cdots ,\sigma _{n}} of the formula at induction step n = n with σ 1 , σ 2 , , σ n + 1 {\displaystyle \sigma _{1},\sigma _{2},\cdots ,\sigma _{n+1}} respectively leads to a σ 1 a σ n f ( σ n + 1 ) d σ n + 1 d σ 2 = 1 ( n 1 ) ! a σ 1 ( σ 1 t ) n 1 f ( t ) d t . {\displaystyle \int _{a}^{\sigma _{1}}\cdots \int _{a}^{\sigma _{n}}f(\sigma _{n+1})\,\mathrm {d} \sigma _{n+1}\cdots \,\mathrm {d} \sigma _{2}={\frac {1}{(n-1)!}}\int _{a}^{\sigma _{1}}(\sigma _{1}-t)^{n-1}f(t)\,\mathrm {d} t.} Putting this expression inside the square bracket results in = a x 1 ( n 1 ) ! a σ 1 ( σ 1 t ) n 1 f ( t ) d t d σ 1 = a x d d σ 1 [ 1 n ! a σ 1 ( σ 1 t ) n f ( t ) d t ] d σ 1 = 1 n ! a x ( x t ) n f ( t ) d t . {\displaystyle {\begin{aligned}&=\int _{a}^{x}{\frac {1}{(n-1)!}}\int _{a}^{\sigma _{1}}(\sigma _{1}-t)^{n-1}f(t)\,\mathrm {d} t\,\mathrm {d} \sigma _{1}\\&=\int _{a}^{x}{\frac {\mathrm {d} }{\mathrm {d} \sigma _{1}}}\left\,\mathrm {d} \sigma _{1}\\&={\frac {1}{n!}}\int _{a}^{x}(x-t)^{n}f(t)\,\mathrm {d} t.\end{aligned}}}

  • It has been shown that this statement holds true for the base case n = 1 {\displaystyle n=1} .
  • If the statement is true for n = k {\displaystyle n=k} , then it has been shown that the statement holds true for n = k + 1 {\displaystyle n=k+1} .
  • Thus this statement has been proven true for all positive integers.

This completes the proof.

Generalizations and applications

The Cauchy formula is generalized to non-integer parameters by the Riemann–Liouville integral, where n Z 0 {\displaystyle n\in \mathbb {Z} _{\geq 0}} is replaced by α C ,   ( α ) > 0 {\displaystyle \alpha \in \mathbb {C} ,\ \Re (\alpha )>0} , and the factorial is replaced by the gamma function. The two formulas agree when α Z 0 {\displaystyle \alpha \in \mathbb {Z} _{\geq 0}} .

Both the Cauchy formula and the Riemann–Liouville integral are generalized to arbitrary dimensions by the Riesz potential.

In fractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.

References

  • Augustin-Louis Cauchy: Trente-Cinquième Leçon. In: Résumé des leçons données à l’Ecole royale polytechnique sur le calcul infinitésimal. Imprimerie Royale, Paris 1823. Reprint: Œuvres complètes II(4), Gauthier-Villars, Paris, pp. 5–261.
  • Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). ISBN 0-13-065265-2

External links

Categories: