Misplaced Pages

Cerium(III) bromide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from CeBr3)
Cerium(III) bromide
Names
IUPAC names Cerium(III) bromide
Cerium tribromide
Other names Cerous bromide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.936 Edit this at Wikidata
EC Number
  • 238-447-0
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/3BrH.Ce/h3*1H;/q;;;+3/p-3Key: MOOUSOJAOQPDEH-UHFFFAOYSA-K
  • InChI=1/3BrH.Ce/h3*1H;/q;;;+3/p-3Key: MOOUSOJAOQPDEH-DFZHHIFOAB
SMILES
  • ...
Properties
Chemical formula CeBr3
Molar mass 379.828 g/mol
Appearance grey to white solid, hygroscopic
Density 5.1 g/cm, solid
Melting point 722 °C (1,332 °F; 995 K)
Boiling point 1,457 °C (2,655 °F; 1,730 K)
Solubility in water 4.56 mol kg (153.8 g/100 g)
Structure
Crystal structure hexagonal (UCl3 type), hP8
Space group P63/m, No. 176
Coordination geometry Tricapped trigonal prismatic
(nine-coordinate)
Hazards
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H315, H319, H335
Flash point Non-flammable
Related compounds
Other anions Cerium(III) fluoride
Cerium(III) chloride
Cerium(III) iodide
Other cations Lanthanum(III) bromide
Praseodymium(III) bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Cerium(III) bromide is an inorganic compound with the formula CeBr3. This white hygroscopic solid is of interest as a component of scintillation counters.

Preparation and basic properties

The compound has been known since at least 1899, when Muthman and Stützel reported its preparation from cerium sulfide and gaseous HBr. Aqueous solutions of CeBr3 can be prepared from the reaction of Ce2(CO3)3·H2O with HBr. The product, CeBr3·H2O can be dehydrated by heating with NH4Br followed by sublimation of residual NH4Br. CeBr3 can be distilled at reduced pressure (~ 0.1 Pa) in a quartz ampoule at 875-880 °C. Like the related salt CeCl3, the bromide absorbs water on exposure to moist air. The compound melts congruently at 722 °C, and well ordered single crystals may be produced using standard crystal growth methods like Bridgman or Czochralski.

CeBr3 adopts the hexagonal, UCl3-type crystal structure with the P63/m space group. The cerium ions are 9-coordinate and adopt a tricapped trigonal prismatic geometry. The cerium–bromine bond lengths are 3.11 Å and 3.16 Å.

Applications

CeBr3-doped lanthanum bromide single crystals are known to exhibit superior scintillation properties for applications in the security, medical imaging, and geophysics detectors.

Undoped single crystals of CeBr3 have shown promise as a γ-ray scintillation detector in nuclear non-proliferation testing, medical imaging, environmental remediation, and oil exploration.

Suppliers

References

  1. Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen; Voigt, Heidelore (2013). "IUPAC-NIST Solubility Data Series. 94. Rare Earth Metal Iodides and Bromides in Water and Aqueous Systems. Part 2. Bromides". Journal of Physical and Chemical Reference Data. 42 (1). AIP Publishing: 013101. Bibcode:2013JPCRD..42a3101M. doi:10.1063/1.4766752. ISSN 0047-2689.
  2. Muthmann, W.; Stützel, L. (1899). "Eine einfache Methode zur Darstellung der Schwefel-, Chlor- und Brom-Verbindungen der Ceritmetalle". Berichte der Deutschen Chemischen Gesellschaft (in German). 32 (3). Wiley: 3413–3419. doi:10.1002/cber.189903203115. ISSN 0365-9496.
  3. Rycerz, L.; Ingier-Stocka, E.; Berkani, M.; Gaune-Escard, M. (2007). "Thermodynamic Functions of Congruently Melting Compounds Formed in the CeBr3−KBr Binary System". Journal of Chemical & Engineering Data. 52 (4). American Chemical Society (ACS): 1209–1212. doi:10.1021/je600517u. ISSN 0021-9568.
  4. Morosin, B. (1968). "Crystal Structures of Anhydrous Rare-Earth Chlorides". The Journal of Chemical Physics. 49 (7). AIP Publishing: 3007–3012. Bibcode:1968JChPh..49.3007M. doi:10.1063/1.1670543. ISSN 0021-9606.
  5. Wells, A. F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford University Press. p. 421. ISBN 978-0-19-965763-6.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1240–1241. ISBN 978-0-08-037941-8.
  7. Zachariasen, W. H. (1948). "Crystal chemical studies of the 5f-series of elements. I. New structure types". Acta Crystallogr. 1 (5): 265–268. Bibcode:1948AcCry...1..265Z. doi:10.1107/S0365110X48000703.
  8. van Loef, E. V. D.; Dorenbos, P.; van Eijk, C. W. E.; Krämer, K.; Güdel, H. U. (2001-09-03). "High-energy-resolution scintillator: Ce activated LaBr3". Applied Physics Letters. 79 (10). AIP Publishing: 1573–1575. Bibcode:2001ApPhL..79.1573V. doi:10.1063/1.1385342. ISSN 0003-6951.
  9. Menge, Peter R.; Gautier, G.; Iltis, A.; Rozsa, C.; Solovyev, V. (2007). "Performance of large lanthanum bromide scintillators". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 579 (1). Elsevier BV: 6–10. Bibcode:2007NIMPA.579....6M. doi:10.1016/j.nima.2007.04.002. ISSN 0168-9002.
  10. Higgins, W.M.; Churilov, A.; van Loef, E.; Glodo, J.; Squillante, M.; Shah, K. (2008). "Crystal growth of large diameter LaBr3:Ce and CeBr3". Journal of Crystal Growth. 310 (7–9). Elsevier BV: 2085–2089. Bibcode:2008JCrGr.310.2085H. doi:10.1016/j.jcrysgro.2007.12.041. ISSN 0022-0248.
Cerium compounds
Cerium(II)
Cerium(III)
Organocerium(III)
Cerium(III,IV)
Cerium(IV)
Salts and covalent derivatives of the bromide ion
HBr He
LiBr BeBr2 BBr3
+BO3
CBr4
+C
NBr3
BrN3
NH4Br
NOBr
+N
Br2O
BrO2
Br2O3
Br2O5
BrF
BrF3
BrF5
Ne
NaBr MgBr2 AlBr
AlBr3
SiBr4 PBr3
PBr5
PBr7
+P
S2Br2
SBr2
BrCl Ar
KBr CaBr2
ScBr3 TiBr2
TiBr3
TiBr4
VBr2
VBr3
CrBr2
CrBr3
CrBr4
MnBr2 FeBr2
FeBr3
CoBr2 NiBr2
NiBr4
CuBr
CuBr2
ZnBr2 GaBr3 GeBr2
GeBr4
AsBr3
+As
+AsO3
SeBr2
SeBr4
Br2 Kr
RbBr SrBr2 YBr3 ZrBr2
ZrBr3
ZrBr4
NbBr5 MoBr2
MoBr3
MoBr4
TcBr3
TcBr4
RuBr3 RhBr3 PdBr2 AgBr CdBr2 InBr
InBr3
SnBr2
SnBr4
SbBr3
+Sb
-Sb
Te2Br
TeBr4
+Te
IBr
IBr3
XeBr2
CsBr BaBr2 * LuBr3 HfBr4 TaBr5 WBr5
WBr6
ReBr3 OsBr3
OsBr4
IrBr3
IrBr
4
PtBr2
PtBr4
AuBr
AuBr3
Hg2Br2
HgBr2
TlBr PbBr2 BiBr3 PoBr2
PoBr4
AtBr Rn
FrBr RaBr2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaBr3 CeBr3 PrBr3 NdBr2
NdBr3
PmBr3 SmBr2
SmBr3
EuBr2
EuBr3
GdBr3 TbBr3 DyBr3 HoBr3 ErBr3 TmBr2
TmBr3
YbBr2
YbBr3
** AcBr3 ThBr4 PaBr4
PaBr5
UBr4
UBr5
NpBr3
NpBr4
PuBr3 AmBr2
AmBr3
CmBr3 BkBr3 CfBr3 EsBr2
EsBr3
Fm Md No
Lanthanide salts of halides
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
+4 CeF4 PrF4 NdF4 TbF4 DyF4
+3 LaF3
LaCl3
LaBr3
LaI3
CeF3
CeCl3
CeBr3
CeI3
PrF3
PrCl3
PrBr3
PrI3
NdF3
NdCl3
NdBr3
NdI3
PmF3
PmCl3
PmBr3
PmI3
SmF3
SmCl3
SmBr3
SmI3
EuF3
EuCl3
EuBr3
EuI3
GdF3
GdCl3
GdBr3
GdI3
TbF3
TbCl3
TbBr3
TbI3
DyF3
DyCl3
DyBr3
DyI3
HoF3
HoCl3
HoBr3
HoI3
ErF3
ErCl3
ErBr3
ErI3
TmF3
TmCl3
TmBr3
TmI3
YbF3
YbCl3
YbBr3
YbI3
LuF3
LuCl3
LuBr3
LuI3
+2 LaI2 CeI2 PrI2 NdF2
NdCl2
NdBr2
NdI2
SmF2
SmCl2
SmBr2
SmI2
EuF2
EuCl2
EuBr2
EuI2
GdI2 DyF2
DyCl2
DyBr2
DyI2
TmF2
TmCl2
TmBr2
TmI2
YbF2
YbCl2
YbBr2
YbI2
Categories: