American air defense artillery system
Phalanx | |
---|---|
A Phalanx C-RAM | |
Type | Air defense artillery |
Place of origin | United States |
Service history | |
In service | 2004–present |
Used by |
|
Wars | |
Production history | |
Designer | |
Manufacturer | |
Specifications | |
Shell | M-940 20mm MPT-SD |
Caliber | 20 mm (0.79 in) |
Barrels | 6, M61A1 type barrel |
Rate of fire | 4500 RPM |
Effective firing range | 2000 meters |
Maximum firing range | 2300 meters |
The Centurion C-RAM, also called the Land Phalanx Weapon System (LPWS), is an American Counter-Rocket, Artillery, and Mortar (C-RAM) air defense artillery system. The system was developed in 2004, during and after the Iraq War identified a weakness in ground-based anti-projectile artillery. The system is produced by Northrop Grumman, Raytheon, and Oshkosh Corporation.
Description
The Phalanx was developed and produced by Northrop Grumman, Raytheon, and Oshkosh Corporation during Operation Enduring Freedom to provide defense from rockets and artillery/mortar shells, fulfilling the Counter Rocket, Artillery, and Mortar role. The system was developed from the Navy's ship-based Phalanx Close-in Weapons System (CIWS) when the Army requested to use the already-produced system to defend against indirect fire after an increase in mortar attacks. The system was first tested by Raytheon in November 2004, entering full service with the Army in 2005 as part of the forward area air defense system. The Army’s strategy was to stop indirect fire from impacting friendly forces or assets, by tracking and warning friendly units, or destroying the munition.
The Phalanx uses the 20-millimeter M-940 MPT-SD round designed by General Dynamics for air defense. The round is engineered to self-destruct 2300 meters from launch, to prevent casualties on the ground. It also contains a tracer. The Centurion has a Ku-band (AN/TPQ-36) active electronically scanned array radar produced by Raytheon for tracking smaller targets in the air. The Phalanx can be mounted on an Oshkosh-built HEMTT with an integrated generator and cooling system. The system was designed to be fully mobile and to increase the flexibility of the inherently stationary system. The vehicle's high power availability was needed to support the vehicle. The mobile variant is functionally the same as the stationary variant. The mobile variant is self-contained for easy deployment and movement.
The system was fielded in Afghanistan at US and allied bases that were too small to cost-effectively deploy other systems. The system has sensors and imaging so that it is fully self-contained. The Centurion shot down 70% of indirect fire in Afghanistan, defending an area roughly 1.2 kilometres (0.75 mi) around the bases as well.
The concept of a laser-based Centurion system has been suggested by companies such as Raytheon, for the ability to cover a larger area. Although projects have been abandoned in the past, and electricity consumption has consistently been too high for combat environments. Lasers have been proposed as a C-RAM system that has a lower impact on the ground, as they create little debris. The laser system is also being proposed to reduce the cost of interception.
Specifications (mobile version)
- Gun: M61A1
- Shell: M-940 20 mm MPT-SD
- Range: 2,000 metres (6,600 ft)
- Fire rate: 4500 rounds per minute
- Weight: 53,000 pounds (24,000 kg)
- Dimensions: (Trailer and truck with unit attached) Length: 19.81 m; Width: 3.65 m; Height: 4.26 m
- Radar: Ku-band (AN/TPQ-36)
- Cost: $10 million
Operators
Name of operator | Year acquired | |
---|---|---|
United States Army | 2004 | |
British Armed Forces | 2007 | |
Israel Defense Forces | 2009 | |
Australian Defence Force | 2016 |
Initially, the C-RAM systems were distributed to United States allies for use against insurgent mortar attacks in the Iraq War, this being a common type of attack. The system was operated by several countries in the Green Zone to defend against attacks on embassies in the area. The system has been pushed as an idea to counter Iranian missiles and drones, especially in the Gulf states and in Ukraine since the Russian invasion in 2022. As of 2008, the US Army had received 22 systems, leading to the Navy experiencing some delays.
Notes
- ^ Used primarily to defend bases in Iraq.
- Originally rented from the United States
- Acquired for testing as a candidate for the Iron Dome air defense system.
References
- ^ "Army C-RAM Intercepts 100th Mortar Bomb in Iraq". 31 December 2009. Archived from the original on 31 December 2009. Retrieved 19 March 2024.
- ^ "Counter-Rocket, Artillery, Mortar (C-RAM) – Missile Defense Advocacy Alliance". Archived from the original on 15 March 2024. Retrieved 19 March 2024.
- ^ "Rapidly Deployable Mobile Counter Rockets Artillery and Mortar (C-RAM)" (PDF). Nato.int. 1 October 2020. Archived (PDF) from the original on 15 March 2024. Retrieved 18 March 2024.
- Beinart, Matthew (30 August 2021). "U.S. Forces Use C-RAM To Take Out Rocket Aimed At Kabul Airport". Defense Daily. Archived from the original on 23 October 2023. Retrieved 19 March 2024.
- ^ "20MM C-RAM" (PDF). General Dynamics. 6 March 2011. Archived (PDF) from the original on 15 March 2024. Retrieved 18 March 2024.
- "KuRFS: Ku-band Radio Frequency Sensor". RTX.com. Archived from the original on 20 March 2024. Retrieved 19 March 2024.
- Raytheon Corporate Communications. "Raytheon: Raytheon's Mobile Land-Based Phalanx Weapon System Completes Live-Fire Demonstration – Dec 2, 2010". Raytheon News Release Archive (Press release). Archived from the original on 20 March 2024. Retrieved 20 March 2024.
- Sheikh, Fawzia (2009). "Shaffer: DOD Fielded System In Afghanistan To Counter Rocket Attacks". Inside the Pentagon. 25 (48): 5–6. ISSN 2164-814X.
- Allen, Christopher W. (2019). US Air Force Expeditionary Security Operations 2040: A Technology Vision for Deployed Air Base Defense Capabilities (Report). Air University Press. pp. 335–354.
- Allen, Christopher W. (2019). US Air Force Expeditionary Security Operations 2040: A Technology Vision for Deployed Air Base Defense Capabilities (Report). Air University Press. pp. 335–354.
- Doubleday, Justin (2014). "Army Successfully Tests High-Energy Laser Against Airborne Threats". Inside the Army. 26 (36): 7. ISSN 2164-8182. JSTOR 24836940.
- ^ "C-RAM CENTURION PHALANX". Army Recognition. 19 November 2022. Archived from the original on 27 February 2023. Retrieved 9 May 2024.
- McFadden, Christopher. "C-RAM: An Advanced Automated Point-Defense Gatling Gun". Interesting Engineering. Retrieved 9 May 2024.
- ^ "UK deploys Phalanx C-RAM system to protect forces in Iraq" (PDF). Jane's Defense Weekly. 25 May 2007. Archived from the original (PDF) on 28 November 2010. Retrieved 20 March 2024.
- ^ "U.S., Israel Pursue Counter Rocket, Artillery & Mortar (C-RAM) Weapons – Defense Update". 8 February 2008. Archived from the original on 20 March 2024. Retrieved 20 March 2024.
- "ADF steps up Iraq training and counter Daesh effort – Australian Defence Magazine". www.australiandefence.com.au. Archived from the original on 20 March 2024. Retrieved 20 March 2024.
- ^ Cohen, Eliot; Edelman, Eric; Takeyh, Ray (2016). "Time to Get Tough on Tehran: Iran Policy After the Deal". Foreign Affairs. 95 (1): 64–75. ISSN 0015-7120. JSTOR 43946626.
- "Ukraine asks US for new capabilities in fighting Iranian drones". ABC News. Archived from the original on 20 March 2024. Retrieved 20 March 2024.