Misplaced Pages

Chandrasekhar–Page equations

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
A massive fermion wave equation in Kerr spacetime

Chandrasekhar–Page equations describe the wave function of the spin-1/2 massive particles, that resulted by seeking a separable solution to the Dirac equation in Kerr metric or Kerr–Newman metric. In 1976, Subrahmanyan Chandrasekhar showed that a separable solution can be obtained from the Dirac equation in Kerr metric. Later, Don Page extended this work to Kerr–Newman metric, that is applicable to charged black holes. In his paper, Page notices that N. Toop also derived his results independently, as informed to him by Chandrasekhar.

By assuming a normal mode decomposition of the form e i ( σ t + m ϕ ) {\displaystyle e^{i(\sigma t+m\phi )}} (with m {\displaystyle m} being a half integer and with the convention R e { σ } > 0 {\displaystyle \mathrm {Re} \{\sigma \}>0} ) for the time and the azimuthal component of the spherical polar coordinates ( r , θ , ϕ ) {\displaystyle (r,\theta ,\phi )} , Chandrasekhar showed that the four bispinor components of the wave function,

[ F 1 ( r , θ ) F 2 ( r , θ ) G 1 ( r , θ ) G 2 ( r , θ ) ] e i ( σ t + m ϕ ) {\displaystyle {\begin{bmatrix}F_{1}(r,\theta )\\F_{2}(r,\theta )\\G_{1}(r,\theta )\\G_{2}(r,\theta )\end{bmatrix}}e^{i(\sigma t+m\phi )}}

can be expressed as product of radial and angular functions. The separation of variables is effected for the functions f 1 = ( r i a cos θ ) F 1 {\displaystyle f_{1}=(r-ia\cos \theta )F_{1}} , f 2 = ( r i a cos θ ) F 2 {\displaystyle f_{2}=(r-ia\cos \theta )F_{2}} , g 1 = ( r + i a cos θ ) G 1 {\displaystyle g_{1}=(r+ia\cos \theta )G_{1}} and g 2 = ( r + i a cos θ ) G 2 {\displaystyle g_{2}=(r+ia\cos \theta )G_{2}} (with a {\displaystyle a} being the angular momentum per unit mass of the black hole) as in

f 1 ( r , θ ) = R 1 2 ( r ) S 1 2 ( θ ) , f 2 ( r , θ ) = R + 1 2 ( r ) S + 1 2 ( θ ) , {\displaystyle f_{1}(r,\theta )=R_{-{\frac {1}{2}}}(r)S_{-{\frac {1}{2}}}(\theta ),\quad f_{2}(r,\theta )=R_{+{\frac {1}{2}}}(r)S_{+{\frac {1}{2}}}(\theta ),}
g 1 ( r , θ ) = R + 1 2 ( r ) S 1 2 ( θ ) , g 2 ( r , θ ) = R 1 2 ( r ) S + 1 2 ( θ ) . {\displaystyle g_{1}(r,\theta )=R_{+{\frac {1}{2}}}(r)S_{-{\frac {1}{2}}}(\theta ),\quad g_{2}(r,\theta )=R_{-{\frac {1}{2}}}(r)S_{+{\frac {1}{2}}}(\theta ).}

Chandrasekhar–Page angular equations

The angular functions satisfy the coupled eigenvalue equations,

L 1 2 S + 1 2 = ( λ a μ cos θ ) S 1 2 , L 1 2 S 1 2 = + ( λ + a μ cos θ ) S + 1 2 , {\displaystyle {\begin{aligned}{\mathcal {L}}_{\frac {1}{2}}S_{+{\frac {1}{2}}}&=-(\lambda -a\mu \cos \theta )S_{-{\frac {1}{2}}},\\{\mathcal {L}}_{\frac {1}{2}}^{\dagger }S_{-{\frac {1}{2}}}&=+(\lambda +a\mu \cos \theta )S_{+{\frac {1}{2}}},\end{aligned}}}

where μ {\displaystyle \mu } is the particle's rest mass (measured in units so that it is the inverse of the Compton wavelength),

L n = d d θ + Q + n cot θ , L n = d d θ Q + n cot θ {\displaystyle {\mathcal {L}}_{n}={\frac {d}{{d}\theta }}+Q+n\cot \theta ,\quad {\mathcal {L}}_{n}^{\dagger }={\frac {d}{{d}\theta }}-Q+n\cot \theta }

and Q = a σ sin θ + m csc θ {\displaystyle Q=a\sigma \sin \theta +m\csc \theta } . Eliminating S + 1 / 2 ( θ ) {\displaystyle S_{+1/2}(\theta )} between the foregoing two equations, one obtains

( L 1 2 L 1 2 + a μ sin θ λ + a μ cos θ L 1 2 + λ 2 a 2 μ 2 cos 2 θ ) S 1 2 = 0. {\displaystyle \left({\mathcal {L}}_{\frac {1}{2}}{\mathcal {L}}_{\frac {1}{2}}^{\dagger }+{\frac {a\mu \sin \theta }{\lambda +a\mu \cos \theta }}{\mathcal {L}}_{\frac {1}{2}}^{\dagger }+\lambda ^{2}-a^{2}\mu ^{2}\cos ^{2}\theta \right)S_{-{\frac {1}{2}}}=0.}

The function S + 1 2 {\displaystyle S_{+{\frac {1}{2}}}} satisfies the adjoint equation, that can be obtained from the above equation by replacing θ {\displaystyle \theta } with π θ {\displaystyle \pi -\theta } . The boundary conditions for these second-order differential equations are that S 1 2 {\displaystyle S_{-{\frac {1}{2}}}} (and S + 1 2 {\displaystyle S_{+{\frac {1}{2}}}} ) be regular at θ = 0 {\displaystyle \theta =0} and θ = π {\displaystyle \theta =\pi } . The eigenvalue problem presented here in general requires numerical integrations for it to be solved. Explicit solutions are available for the case where σ = μ {\displaystyle \sigma =\mu } .

Chandrasekhar–Page radial equations

The corresponding radial equations are given by

Δ 1 2 D 0 R 1 2 = ( λ + i μ r ) Δ 1 2 R + 1 2 , Δ 1 2 D 0 R + 1 2 = ( λ i μ r ) R 1 2 , {\displaystyle {\begin{aligned}\Delta ^{\frac {1}{2}}{\mathcal {D}}_{0}R_{-{\frac {1}{2}}}&=(\lambda +i\mu r)\Delta ^{\frac {1}{2}}R_{+{\frac {1}{2}}},\\\Delta ^{\frac {1}{2}}{\mathcal {D}}_{0}^{\dagger }R_{+{\frac {1}{2}}}&=(\lambda -i\mu r)R_{-{\frac {1}{2}}},\end{aligned}}}

where Δ = r 2 2 M r + a 2 , {\displaystyle \Delta =r^{2}-2Mr+a^{2},} M {\displaystyle M} is the black hole mass,

D n = d d r + i K Δ + 2 n r M Δ , D n = d d r i K Δ + 2 n r M Δ , {\displaystyle {\mathcal {D}}_{n}={\frac {d}{{d}r}}+{\frac {iK}{\Delta }}+2n{\frac {r-M}{\Delta }},\quad {\mathcal {D}}_{n}^{\dagger }={\frac {d}{{d}r}}-{\frac {iK}{\Delta }}+2n{\frac {r-M}{\Delta }},}

and K = ( r 2 + a 2 ) σ + a m . {\displaystyle K=(r^{2}+a^{2})\sigma +am.} Eliminating Δ 1 2 R + 1 2 {\displaystyle \Delta ^{\frac {1}{2}}R_{+{\frac {1}{2}}}} from the two equations, we obtain

( Δ D 1 2 D 0 i μ Δ λ + i μ r D 0 λ 2 μ 2 r 2 ) R 1 2 = 0. {\displaystyle \left(\Delta {\mathcal {D}}_{\frac {1}{2}}^{\dagger }{\mathcal {D}}_{0}-{\frac {i\mu \Delta }{\lambda +i\mu r}}{\mathcal {D}}_{0}-\lambda ^{2}-\mu ^{2}r^{2}\right)R_{-{\frac {1}{2}}}=0.}

The function Δ 1 2 R + 1 2 {\displaystyle \Delta ^{\frac {1}{2}}R_{+{\frac {1}{2}}}} satisfies the corresponding complex-conjugate equation.

Reduction to one-dimensional scattering problem

The problem of solving the radial functions for a particular eigenvalue of λ {\displaystyle \lambda } of the angular functions can be reduced to a problem of reflection and transmission as in one-dimensional Schrödinger equation; see also Regge–Wheeler–Zerilli equations. Particularly, we end up with the equations

( d 2 d r ^ 2 + σ 2 ) Z ± = V ± Z ± , {\displaystyle \left({\frac {d^{2}}{d{\hat {r}}_{*}^{2}}}+\sigma ^{2}\right)Z^{\pm }=V^{\pm }Z^{\pm },}

where the Chandrasekhar–Page potentials V ± {\displaystyle V^{\pm }} are defined by

V ± = W 2 ± d W d r ^ , W = Δ 1 2 ( λ + μ 2 r 2 ) 3 / 2 ϖ 2 ( λ 2 + μ 2 r 2 ) + λ μ Δ / 2 σ , {\displaystyle V^{\pm }=W^{2}\pm {\frac {dW}{d{\hat {r}}_{*}}},\quad W={\frac {\Delta ^{\frac {1}{2}}(\lambda +\mu ^{2}r^{2})^{3/2}}{\varpi ^{2}(\lambda ^{2}+\mu ^{2}r^{2})+\lambda \mu \Delta /2\sigma }},}

and r ^ = r + tan 1 ( μ r / λ ) / 2 σ {\displaystyle {\hat {r}}_{*}=r_{*}+\tan ^{-1}(\mu r/\lambda )/2\sigma } , r = r + 2 M ln ( r / 2 M 1 ) {\displaystyle r_{*}=r+2M\ln(r/2M-1)} is the tortoise coordinate and ϖ 2 = r 2 + a 2 + a m / σ {\displaystyle \varpi ^{2}=r^{2}+a^{2}+am/\sigma } . The functions Z ± ( r ^ ) {\displaystyle Z^{\pm }({\hat {r}}_{*})} are defined by Z ± = ψ + ± ψ {\displaystyle Z^{\pm }=\psi ^{+}\pm \psi ^{-}} , where

ψ + = Δ 1 2 R + 1 2 e x p ( + i 2 tan 1 μ r λ ) , ψ = R 1 2 e x p ( i 2 tan 1 μ r λ ) . {\displaystyle \psi ^{+}=\Delta ^{\frac {1}{2}}R_{+{\frac {1}{2}}}\mathrm {exp} \left(+{\frac {i}{2}}\tan ^{-1}{\frac {\mu r}{\lambda }}\right),\quad \psi ^{-}=R_{-{\frac {1}{2}}}\mathrm {exp} \left(-{\frac {i}{2}}\tan ^{-1}{\frac {\mu r}{\lambda }}\right).}

Unlike the Regge–Wheeler–Zerilli potentials, the Chandrasekhar–Page potentials do not vanish for r {\displaystyle r\to \infty } , but has the behaviour

V ± = μ 2 ( 1 2 M r + ) . {\displaystyle V^{\pm }=\mu ^{2}\left(1-{\frac {2M}{r}}+\cdots \right).}

As a result, the corresponding asymptotic behaviours for Z ± {\displaystyle Z^{\pm }} as r {\displaystyle r\to \infty } becomes

Z ± = e x p { ± i [ ( σ 2 μ 2 ) 1 / 2 r + M μ 2 ( σ 2 μ 2 ) 1 / 2 ln r 2 M ] } . {\displaystyle Z^{\pm }=\mathrm {exp} \left\{\pm i\left\right\}.}

References

  1. Chandrasekhar, S. (1976-06-29). "The solution of Dirac's equation in Kerr geometry". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 349 (1659). The Royal Society: 571–575. Bibcode:1976RSPSA.349..571C. doi:10.1098/rspa.1976.0090. ISSN 2053-9169. S2CID 122791570.
  2. Page, Don N. (1976-09-15). "Dirac equation around a charged, rotating black hole". Physical Review D. 14 (6). American Physical Society (APS): 1509–1510. Bibcode:1976PhRvD..14.1509P. doi:10.1103/physrevd.14.1509. ISSN 0556-2821.
  3. ^ Chandrasekhar, S.,(1983). The mathematical theory of black holes. Clarenden Press, Section 104
  4. Chakrabarti, S. K. (1984-01-09). "On mass-dependent spheroidal harmonics of spin one-half". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 391 (1800). The Royal Society: 27–38. Bibcode:1984RSPSA.391...27C. doi:10.1098/rspa.1984.0002. ISSN 2053-9169. JSTOR 2397528. S2CID 120673756.
Categories: