For the similarly named inequality in probability theory , see Chebyshev's inequality .
In mathematics , Chebyshev's sum inequality , named after Pafnuty Chebyshev , states that if
a
1
≥
a
2
≥
⋯
≥
a
n
{\displaystyle a_{1}\geq a_{2}\geq \cdots \geq a_{n}\quad }
and
b
1
≥
b
2
≥
⋯
≥
b
n
,
{\displaystyle \quad b_{1}\geq b_{2}\geq \cdots \geq b_{n},}
then
1
n
∑
k
=
1
n
a
k
b
k
≥
(
1
n
∑
k
=
1
n
a
k
)
(
1
n
∑
k
=
1
n
b
k
)
.
{\displaystyle {1 \over n}\sum _{k=1}^{n}a_{k}b_{k}\geq \left({1 \over n}\sum _{k=1}^{n}a_{k}\right)\!\!\left({1 \over n}\sum _{k=1}^{n}b_{k}\right)\!.}
Similarly, if
a
1
≤
a
2
≤
⋯
≤
a
n
{\displaystyle a_{1}\leq a_{2}\leq \cdots \leq a_{n}\quad }
and
b
1
≤
b
2
≤
⋯
≤
b
n
,
{\displaystyle \quad b_{1}\leq b_{2}\leq \cdots \leq b_{n},}
then
1
n
∑
k
=
1
n
a
k
b
k
≤
(
1
n
∑
k
=
1
n
a
k
)
(
1
n
∑
k
=
1
n
b
k
)
.
{\displaystyle {1 \over n}\sum _{k=1}^{n}a_{k}b_{k}\leq \left({1 \over n}\sum _{k=1}^{n}a_{k}\right)\!\!\left({1 \over n}\sum _{k=1}^{n}b_{k}\right)\!.}
Proof
Consider the sum
S
=
∑
j
=
1
n
∑
k
=
1
n
(
a
j
−
a
k
)
(
b
j
−
b
k
)
.
{\displaystyle S=\sum _{j=1}^{n}\sum _{k=1}^{n}(a_{j}-a_{k})(b_{j}-b_{k}).}
The two sequences are non-increasing , therefore a j − a k and b j − b k have the same sign for any j , k . Hence S ≥ 0.
Opening the brackets, we deduce:
0
≤
2
n
∑
j
=
1
n
a
j
b
j
−
2
∑
j
=
1
n
a
j
∑
j
=
1
n
b
j
,
{\displaystyle 0\leq 2n\sum _{j=1}^{n}a_{j}b_{j}-2\sum _{j=1}^{n}a_{j}\,\sum _{j=1}^{n}b_{j},}
hence
1
n
∑
j
=
1
n
a
j
b
j
≥
(
1
n
∑
j
=
1
n
a
j
)
(
1
n
∑
j
=
1
n
b
j
)
.
{\displaystyle {\frac {1}{n}}\sum _{j=1}^{n}a_{j}b_{j}\geq \left({\frac {1}{n}}\sum _{j=1}^{n}a_{j}\right)\!\!\left({\frac {1}{n}}\sum _{j=1}^{n}b_{j}\right)\!.}
An alternative proof is simply obtained with the rearrangement inequality , writing that
∑
i
=
0
n
−
1
a
i
∑
j
=
0
n
−
1
b
j
=
∑
i
=
0
n
−
1
∑
j
=
0
n
−
1
a
i
b
j
=
∑
i
=
0
n
−
1
∑
k
=
0
n
−
1
a
i
b
i
+
k
mod
n
=
∑
k
=
0
n
−
1
∑
i
=
0
n
−
1
a
i
b
i
+
k
mod
n
≤
∑
k
=
0
n
−
1
∑
i
=
0
n
−
1
a
i
b
i
=
n
∑
i
a
i
b
i
.
{\displaystyle \sum _{i=0}^{n-1}a_{i}\sum _{j=0}^{n-1}b_{j}=\sum _{i=0}^{n-1}\sum _{j=0}^{n-1}a_{i}b_{j}=\sum _{i=0}^{n-1}\sum _{k=0}^{n-1}a_{i}b_{i+k~{\text{mod}}~n}=\sum _{k=0}^{n-1}\sum _{i=0}^{n-1}a_{i}b_{i+k~{\text{mod}}~n}\leq \sum _{k=0}^{n-1}\sum _{i=0}^{n-1}a_{i}b_{i}=n\sum _{i}a_{i}b_{i}.}
Continuous version
There is also a continuous version of Chebyshev's sum inequality:
If f and g are real -valued, integrable functions over , both non-increasing or both non-decreasing, then
1
b
−
a
∫
a
b
f
(
x
)
g
(
x
)
d
x
≥
(
1
b
−
a
∫
a
b
f
(
x
)
d
x
)
(
1
b
−
a
∫
a
b
g
(
x
)
d
x
)
{\displaystyle {\frac {1}{b-a}}\int _{a}^{b}f(x)g(x)\,dx\geq \!\left({\frac {1}{b-a}}\int _{a}^{b}f(x)\,dx\right)\!\!\left({\frac {1}{b-a}}\int _{a}^{b}g(x)\,dx\right)}
with the inequality reversed if one is non-increasing and the other is non-decreasing.
See also
Notes
Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1988). Inequalities . Cambridge Mathematical Library. Cambridge: Cambridge University Press. ISBN 0-521-35880-9 . MR 0944909 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑