Misplaced Pages

Chisini mean

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, a function f of n variables x1, ..., xn leads to a Chisini mean M if, for every vector ⟨x1, ..., xn⟩, there exists a unique M such that

f(M,M, ..., M) = f(x1,x2, ..., xn).

The arithmetic, harmonic, geometric, generalised, Heronian and quadratic means are all Chisini means, as are their weighted variants.

While Oscar Chisini was arguably the first to deal with "substitution means" in some depth in 1929, the idea of defining a mean as above is quite old, appearing (for example) in early works of Augustus De Morgan.

See also

References

  1. ^ Graziani, Rebecca; Veronese, Piero (2009). "How to Compute a Mean? The Chisini Approach and Its Applications". The American Statistician. 63 (1): 33–36. doi:10.1198/tast.2009.0006. JSTOR 27644090. S2CID 119340091.
  2. De Morgan, Augustus. "Mean" in Penny Cyclopaedia (1839).


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: