Misplaced Pages

Classification of low-dimensional real Lie algebras

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article is in list format but may read better as prose. You can help by converting this article, if appropriate. Editing help is available. (September 2023)
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (September 2023) (Learn how and when to remove this message)
(Learn how and when to remove this message)

This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963. It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al. in 2003.

Mubarakzyanov's Classification

Let g n {\displaystyle {\mathfrak {g}}_{n}} be n {\displaystyle n} -dimensional Lie algebra over the field of real numbers with generators e 1 , , e n {\displaystyle e_{1},\dots ,e_{n}} , n 4 {\displaystyle n\leq 4} . For each algebra g {\displaystyle {\mathfrak {g}}} we adduce only non-zero commutators between basis elements.

One-dimensional

  • g 1 {\displaystyle {\mathfrak {g}}_{1}} , abelian.

Two-dimensional

  • 2 g 1 {\displaystyle 2{\mathfrak {g}}_{1}} , abelian R 2 {\displaystyle \mathbb {R} ^{2}} ;
  • g 2.1 {\displaystyle {\mathfrak {g}}_{2.1}} , solvable a f f ( 1 ) = { ( a b 0 0 ) : a , b R } {\displaystyle {\mathfrak {aff}}(1)=\left\{{\begin{pmatrix}a&b\\0&0\end{pmatrix}}\,:\,a,b\in \mathbb {R} \right\}} ,
[ e 1 , e 2 ] = e 1 . {\displaystyle =e_{1}.}

Three-dimensional

  • 3 g 1 {\displaystyle 3{\mathfrak {g}}_{1}} , abelian, Bianchi I;
  • g 2.1 g 1 {\displaystyle {\mathfrak {g}}_{2.1}\oplus {\mathfrak {g}}_{1}} , decomposable solvable, Bianchi III;
  • g 3.1 {\displaystyle {\mathfrak {g}}_{3.1}} , Heisenberg–Weyl algebra, nilpotent, Bianchi II,
[ e 2 , e 3 ] = e 1 ; {\displaystyle =e_{1};}
  • g 3.2 {\displaystyle {\mathfrak {g}}_{3.2}} , solvable, Bianchi IV,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 1 + e 2 ; {\displaystyle =e_{1},\quad =e_{1}+e_{2};}
  • g 3.3 {\displaystyle {\mathfrak {g}}_{3.3}} , solvable, Bianchi V,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 2 ; {\displaystyle =e_{1},\quad =e_{2};}
  • g 3.4 {\displaystyle {\mathfrak {g}}_{3.4}} , solvable, Bianchi VI, Poincaré algebra p ( 1 , 1 ) {\displaystyle {\mathfrak {p}}(1,1)} when α = 1 {\displaystyle \alpha =-1} ,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = α e 2 , 1 α < 1 , α 0 ; {\displaystyle =e_{1},\quad =\alpha e_{2},\quad -1\leq \alpha <1,\quad \alpha \neq 0;}
  • g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , solvable, Bianchi VII,
[ e 1 , e 3 ] = β e 1 e 2 , [ e 2 , e 3 ] = e 1 + β e 2 , β 0 ; {\displaystyle =\beta e_{1}-e_{2},\quad =e_{1}+\beta e_{2},\quad \beta \geq 0;}
  • g 3.6 {\displaystyle {\mathfrak {g}}_{3.6}} , simple, Bianchi VIII, s l ( 2 , R ) , {\displaystyle {\mathfrak {sl}}(2,\mathbb {R} ),}
[ e 1 , e 2 ] = e 1 , [ e 2 , e 3 ] = e 3 , [ e 1 , e 3 ] = 2 e 2 ; {\displaystyle =e_{1},\quad =e_{3},\quad =2e_{2};}
  • g 3.7 {\displaystyle {\mathfrak {g}}_{3.7}} , simple, Bianchi IX, s o ( 3 ) , {\displaystyle {\mathfrak {so}}(3),}
[ e 2 , e 3 ] = e 1 , [ e 3 , e 1 ] = e 2 , [ e 1 , e 2 ] = e 3 . {\displaystyle =e_{1},\quad =e_{2},\quad =e_{3}.}

Algebra g 3.3 {\displaystyle {\mathfrak {g}}_{3.3}} can be considered as an extreme case of g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , when β {\displaystyle \beta \rightarrow \infty } , forming contraction of Lie algebra.

Over the field C {\displaystyle {\mathbb {C} }} algebras g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , g 3.7 {\displaystyle {\mathfrak {g}}_{3.7}} are isomorphic to g 3.4 {\displaystyle {\mathfrak {g}}_{3.4}} and g 3.6 {\displaystyle {\mathfrak {g}}_{3.6}} , respectively.

Four-dimensional

  • 4 g 1 {\displaystyle 4{\mathfrak {g}}_{1}} , abelian;
  • g 2.1 2 g 1 {\displaystyle {\mathfrak {g}}_{2.1}\oplus 2{\mathfrak {g}}_{1}} , decomposable solvable,
[ e 1 , e 2 ] = e 1 ; {\displaystyle =e_{1};}
  • 2 g 2.1 {\displaystyle 2{\mathfrak {g}}_{2.1}} , decomposable solvable,
[ e 1 , e 2 ] = e 1 [ e 3 , e 4 ] = e 3 ; {\displaystyle =e_{1}\quad =e_{3};}
  • g 3.1 g 1 {\displaystyle {\mathfrak {g}}_{3.1}\oplus {\mathfrak {g}}_{1}} , decomposable nilpotent,
[ e 2 , e 3 ] = e 1 ; {\displaystyle =e_{1};}
  • g 3.2 g 1 {\displaystyle {\mathfrak {g}}_{3.2}\oplus {\mathfrak {g}}_{1}} , decomposable solvable,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 1 + e 2 ; {\displaystyle =e_{1},\quad =e_{1}+e_{2};}
  • g 3.3 g 1 {\displaystyle {\mathfrak {g}}_{3.3}\oplus {\mathfrak {g}}_{1}} , decomposable solvable,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 2 ; {\displaystyle =e_{1},\quad =e_{2};}
  • g 3.4 g 1 {\displaystyle {\mathfrak {g}}_{3.4}\oplus {\mathfrak {g}}_{1}} , decomposable solvable,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = α e 2 , 1 α < 1 , α 0 ; {\displaystyle =e_{1},\quad =\alpha e_{2},\quad -1\leq \alpha <1,\quad \alpha \neq 0;}
  • g 3.5 g 1 {\displaystyle {\mathfrak {g}}_{3.5}\oplus {\mathfrak {g}}_{1}} , decomposable solvable,
[ e 1 , e 3 ] = β e 1 e 2 [ e 2 , e 3 ] = e 1 + β e 2 , β 0 ; {\displaystyle =\beta e_{1}-e_{2}\quad =e_{1}+\beta e_{2},\quad \beta \geq 0;}
  • g 3.6 g 1 {\displaystyle {\mathfrak {g}}_{3.6}\oplus {\mathfrak {g}}_{1}} , unsolvable,
[ e 1 , e 2 ] = e 1 , [ e 2 , e 3 ] = e 3 , [ e 1 , e 3 ] = 2 e 2 ; {\displaystyle =e_{1},\quad =e_{3},\quad =2e_{2};}
  • g 3.7 g 1 {\displaystyle {\mathfrak {g}}_{3.7}\oplus {\mathfrak {g}}_{1}} , unsolvable,
[ e 1 , e 2 ] = e 3 , [ e 2 , e 3 ] = e 1 , [ e 3 , e 1 ] = e 2 ; {\displaystyle =e_{3},\quad =e_{1},\quad =e_{2};}
  • g 4.1 {\displaystyle {\mathfrak {g}}_{4.1}} , indecomposable nilpotent,
[ e 2 , e 4 ] = e 1 , [ e 3 , e 4 ] = e 2 ; {\displaystyle =e_{1},\quad =e_{2};}
  • g 4.2 {\displaystyle {\mathfrak {g}}_{4.2}} , indecomposable solvable,
[ e 1 , e 4 ] = β e 1 , [ e 2 , e 4 ] = e 2 , [ e 3 , e 4 ] = e 2 + e 3 , β 0 ; {\displaystyle =\beta e_{1},\quad =e_{2},\quad =e_{2}+e_{3},\quad \beta \neq 0;}
  • g 4.3 {\displaystyle {\mathfrak {g}}_{4.3}} , indecomposable solvable,
[ e 1 , e 4 ] = e 1 , [ e 3 , e 4 ] = e 2 ; {\displaystyle =e_{1},\quad =e_{2};}
  • g 4.4 {\displaystyle {\mathfrak {g}}_{4.4}} , indecomposable solvable,
[ e 1 , e 4 ] = e 1 , [ e 2 , e 4 ] = e 1 + e 2 , [ e 3 , e 4 ] = e 2 + e 3 ; {\displaystyle =e_{1},\quad =e_{1}+e_{2},\quad =e_{2}+e_{3};}
  • g 4.5 {\displaystyle {\mathfrak {g}}_{4.5}} , indecomposable solvable,
[ e 1 , e 4 ] = α e 1 , [ e 2 , e 4 ] = β e 2 , [ e 3 , e 4 ] = γ e 3 , α β γ 0 ; {\displaystyle =\alpha e_{1},\quad =\beta e_{2},\quad =\gamma e_{3},\quad \alpha \beta \gamma \neq 0;}
  • g 4.6 {\displaystyle {\mathfrak {g}}_{4.6}} , indecomposable solvable,
[ e 1 , e 4 ] = α e 1 , [ e 2 , e 4 ] = β e 2 e 3 , [ e 3 , e 4 ] = e 2 + β e 3 , α > 0 ; {\displaystyle =\alpha e_{1},\quad =\beta e_{2}-e_{3},\quad =e_{2}+\beta e_{3},\quad \alpha >0;}
  • g 4.7 {\displaystyle {\mathfrak {g}}_{4.7}} , indecomposable solvable,
[ e 2 , e 3 ] = e 1 , [ e 1 , e 4 ] = 2 e 1 , [ e 2 , e 4 ] = e 2 , [ e 3 , e 4 ] = e 2 + e 3 ; {\displaystyle =e_{1},\quad =2e_{1},\quad =e_{2},\quad =e_{2}+e_{3};}
  • g 4.8 {\displaystyle {\mathfrak {g}}_{4.8}} , indecomposable solvable,
[ e 2 , e 3 ] = e 1 , [ e 1 , e 4 ] = ( 1 + β ) e 1 , [ e 2 , e 4 ] = e 2 , [ e 3 , e 4 ] = β e 3 , 1 β 1 ; {\displaystyle =e_{1},\quad =(1+\beta )e_{1},\quad =e_{2},\quad =\beta e_{3},\quad -1\leq \beta \leq 1;}
  • g 4.9 {\displaystyle {\mathfrak {g}}_{4.9}} , indecomposable solvable,
[ e 2 , e 3 ] = e 1 , [ e 1 , e 4 ] = 2 α e 1 , [ e 2 , e 4 ] = α e 2 e 3 , [ e 3 , e 4 ] = e 2 + α e 3 , α 0 ; {\displaystyle =e_{1},\quad =2\alpha e_{1},\quad =\alpha e_{2}-e_{3},\quad =e_{2}+\alpha e_{3},\quad \alpha \geq 0;}
  • g 4.10 {\displaystyle {\mathfrak {g}}_{4.10}} , indecomposable solvable,
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 2 , [ e 1 , e 4 ] = e 2 , [ e 2 , e 4 ] = e 1 . {\displaystyle =e_{1},\quad =e_{2},\quad =-e_{2},\quad =e_{1}.}

Algebra g 4.3 {\displaystyle {\mathfrak {g}}_{4.3}} can be considered as an extreme case of g 4.2 {\displaystyle {\mathfrak {g}}_{4.2}} , when β 0 {\displaystyle \beta \rightarrow 0} , forming contraction of Lie algebra.

Over the field C {\displaystyle {\mathbb {C} }} algebras g 3.5 g 1 {\displaystyle {\mathfrak {g}}_{3.5}\oplus {\mathfrak {g}}_{1}} , g 3.7 g 1 {\displaystyle {\mathfrak {g}}_{3.7}\oplus {\mathfrak {g}}_{1}} , g 4.6 {\displaystyle {\mathfrak {g}}_{4.6}} , g 4.9 {\displaystyle {\mathfrak {g}}_{4.9}} , g 4.10 {\displaystyle {\mathfrak {g}}_{4.10}} are isomorphic to g 3.4 g 1 {\displaystyle {\mathfrak {g}}_{3.4}\oplus {\mathfrak {g}}_{1}} , g 3.6 g 1 {\displaystyle {\mathfrak {g}}_{3.6}\oplus {\mathfrak {g}}_{1}} , g 4.5 {\displaystyle {\mathfrak {g}}_{4.5}} , g 4.8 {\displaystyle {\mathfrak {g}}_{4.8}} , 2 g 2.1 {\displaystyle {2{\mathfrak {g}}}_{2.1}} , respectively.

See also

Notes

  1. Mubarakzyanov 1963
  2. Popovych 2003

References

Categories: